導航:首頁 > 源碼編譯 > 神州演算法工程師面試

神州演算法工程師面試

發布時間:2023-08-16 20:56:54

❶ 嵌入式工程師面試中常出現的演算法

嵌入式工程師面試中常出現的演算法

嵌入式系統是以應用為中心,以計算機技術為基礎,並且軟硬體可裁剪,適用於應用系統對功能、可靠性、成本、體積、功耗有嚴格要求的專用計算機系統。下面我為大家整理了關於嵌入式工程師面試中經常出現的演算法文章,希望對你有所幫助。

二分查找的代碼.

int bfind(int* a,int len,int val)

{

int m = len/2;

int l = 0;

int r = len;

while(l!=m && r!= m)

{

if(a[m] > val)

{

r = m;

m = (m+l)/2;

}

else if(a[m] < val)

{

l = m;

m = (m+r)/2;

}

else

return m;

}

return -1; //沒有找到

}

寫出在母串中查找子串出現次數的代碼.

int count1(char* str,char* s)

{

char* s1;

char* s2;

int count = 0;

while(*str!='')

{

s1 = str;

s2 = s;

while(*s2 == *s1&&(*s2!='')&&(*s1!='0'))

{

s2++;

s1++;

}

if(*s2 == '')

count++;

str++;

}

return count;

}

查找第一個匹配子串位置,如果返回的是s1長度len1表示沒有找到

size_t find(char* s1,char* s2)

{

size_t i=0;

size_t len1 = strlen(s1)

size_t len2 = strlen(s2);

if(len1-len2<0) return len1;

for(;i {

size_t m = i;

for(size_t j=0;j {

if(s1[m]!=s2[j])

break;

m++;

}

if(j==len)

break;

}

return i }

寫出快速排序或者某種排序演算法代碼

快速排序:

int partition(int* a,int l,int r)

{

int i=l-1,j=r,v=a[r];

while(1)

{

while(a[++i] while(a[--j]>v) if(j<=i) break;

if(i>=j)

break;

swap(a[i],a[j]);

}

swap(a[i],a[r]);

return i;

}

void qsort(int* a,int l,int r)

{

if(l>=r) return;

int i = partition(a,l,r);

qsort(a,l,i-1);

qsort(a,i+1,r);

}

冒泡排序:

void buble(int *a,int n)

{

for(int i=0;i {

for(int j=1;j {

if(a[j] {

int temp=a[j];

a[j] = a[j-1];

a[j-1] = temp;

}

}

}

}

插入排序:

void insertsort(int* a,int n)

{

int key;

for(int j=1;j {

key = a[j];

for(int i=j-1;i>=0&&a[i]>key;i--)

{

a[i+1] = a[i];

}

a[i+1] = key;

}

}

出現次數相當頻繁

實現strcmp函數

int strcmp11(char* l,char* r)

{

assert(l!=0&&r!=0);

while(*l == *r &&*l != '') l++,r++;

if(*l > *r)

return 1;

else if(*l == *r)

return 0;

return -1;

}

實現字元串翻轉

void reserve(char* str)

{

assert(str != NULL);

char * p1 = str;

char * p2 = str-1;

while(*++p2); //一般要求不能使用strlen

p2 -= 1;

while(p1 {

char c = *p1;

*p1++ = *p2;

*p2-- = c;

}

}

將一個單鏈表逆序

struct list_node

{

list_node(int a,list_node* b):data(a),next(b) //這個為了測試方便

{}

int data;

list_node* next;

};

void reserve(list_node* phead)

{

list_node* p = phead->next;

if(p == NULL || p->next == NULL) return; //只有頭節點或一個節點

list_node* p1=p->next;

p->next=NULL;

while(p1!=NULL)

{

p = p1->next;

p1->next = phead->next;

phead->next = p1;

p1 = p;

}

}

測試程序:

list lt;

lt.phead = new list_node(0,0);

lt.phead->next = new list_node(1,0);

lt.phead->next->next = new list_node(2,0);

lt.phead->next->next->next = new list_node(3,0);

lt.reserve();

list_node * p = lt.phead;

while(p)

{

coutnext;

}

循環鏈表的節點對換和刪除。

//雙向循環

list_node* earse(list_node* node)

{

// if(node == rear) return node->next; //對於頭節點可判斷也可不判斷。最好加上

list_node* next = node->next;

next->prev = node->prev;

node->prev->next = next;

delete node;

retrun next;

}

//單項循環

list_node* earse(list_node* node)

{

// if(node == rear) return node->next; //對於頭節點可判斷也可不判斷。最好加上

list_node* p = rear;

while(p->next != node) p=p->next;

p->next = node->next;

delete node;

retrun p->next;

}

將一個數字字元串轉換為數字."1234" -->1234

int atoii(char* s)

{

assert(s!=NULL);

int num = 0;

int temp;

while(*s>'0' && *s<'9')

{

num *= 10;

num += *s-'0';

s++;

}

return num;

}

出現次數相當頻繁

.實現任意長度的整數相加或者相乘功能。

void bigadd(char* num,char* str,int len)

{

for(int i=len;i>0;i--)

{

num[i] += str[i];

int j = i;

while(num[j]>=10)

{

num[j--] -= 10;

num[j] += 1;

}

}

}

.寫函數完成內存的拷貝

void* memcpy( void *dst, const void *src, unsigned int len )

{

register char *d;

register char *s;

if (len == 0)

return dst;

if ( dst > src ) //考慮覆蓋情況

{

d = (char *)dst + len - 1;

s = (char *)src + len - 1;

while ( len >= 4 ) //循環展開,提高執行效率

{

*d-- = *s--;

*d-- = *s--;

*d-- = *s--;

*d-- = *s--;

len -= 4;

}

while ( len-- )

{

*d-- = *s--;

}

}

else if ( dst < src )

{

d = (char *)dst;

s = (char *)src;

while ( len >= 4 )

{

*d++ = *s++;

*d++ = *s++;

*d++ = *s++;

*d++ = *s++;

len -= 4;

}

while ( len-- )

{

*d++ = *s++;

}

}

return dst;

}

出現次數相當頻繁

編寫類String的構造函數、析構函數和賦值函數,已知類String的原型為:

class String

{

public:

String(const char *str = NULL); // 普通構造函數

String(const String &other); // 拷貝構造函數

~ String(void); // 析構函數

String & operate =(const String &other); // 賦值函數

private:

char *m_data; // 用於保存字元串

};

解答:

//普通構造函數

String::String(const char *str)

{

if(str==NULL)

{

m_data = new char[1]; // 得分點:對空字元串自動申請存放結束標志''的`空

//加分點:對m_data加NULL 判斷

*m_data = '';

}

else

{

int length = strlen(str);

m_data = new char[length+1]; // 若能加 NULL 判斷則更好

strcpy(m_data, str);

}

}

// String的析構函數

String::~String(void)

{

delete [] m_data; // 或delete m_data;

}

//拷貝構造函數

String::String(const String &other) // 得分點:輸入參數為const型

{

int length = strlen(other.m_data);

m_data = new char[length+1]; //加分點:對m_data加NULL 判斷

strcpy(m_data, other.m_data);

}

//賦值函數

String & String::operate =(const String &other) // 得分點:輸入參數為const型

{

if(this == &other) //得分點:檢查自賦值

return *this;

delete [] m_data; //得分點:釋放原有的內存資源

int length = strlen( other.m_data );

m_data = new char[length+1]; //加分點:對m_data加NULL 判斷

strcpy( m_data, other.m_data );

return *this; //得分點:返回本對象的引用

}

剖析:

能夠准確無誤地編寫出String類的構造函數、拷貝構造函數、賦值函數和析構函數的面試者至少已經具備了C++基本功的60%以上!

在這個類中包括了指針類成員變數m_data,當類中包括指針類成員變數時,一定要重載其拷貝構造函數、賦值函數和析構函數,這既是對C++程序員的基本要求,也是《EffectiveC++》中特別強調的條款。

實現strcpy

char * strcpy( char *strDest, const char *strSrc )

{

assert( (strDest != NULL) && (strSrc != NULL) );

char *address = strDest;

while( (*strDest++ = * strSrc++) != ‘’ );

return address;

}

編寫一個函數,作用是把一個char組成的字元串循環右移n個。比如原來是“abcdefghi”如果n=2,移位後應該是“hiabcdefgh”

函數頭是這樣的:

//pStr是指向以''結尾的字元串的指針

//steps是要求移動的n

void LoopMove ( char * pStr, int steps )

{

//請填充...

}

解答:

正確解答1:

void LoopMove ( char *pStr, int steps )

{

int n = strlen( pStr ) - steps;

char tmp[MAX_LEN];

strcpy ( tmp, pStr + n );

strcpy ( tmp + steps, pStr);

*( tmp + strlen ( pStr ) ) = '';

strcpy( pStr, tmp );

}

正確解答2:

void LoopMove ( char *pStr, int steps )

{

int n = strlen( pStr ) - steps;

char tmp[MAX_LEN];

memcpy( tmp, pStr + n, steps );

memcpy(pStr + steps, pStr, n );

memcpy(pStr, tmp, steps );

}

;

❷ 計算機視覺演算法工程師常見面試題1

參考: https://www.hu.com/column/c_1170719557072326656

反卷積也稱為轉置卷積,如果用矩陣乘法實現卷積操作,將卷積核平鋪為矩陣,則轉置卷積在正向計算時左乘這個矩陣的轉置WT,在反向傳播是左乘W,與卷積操作剛好相反,需要注意的是,反卷積不是卷積的逆運算。
[知乎問題+caffe實現]

實現上采樣;近似重構輸入圖像,卷積層可視化。

只要激活函數選擇得當,神經元的數量足夠,至少有一個隱含層的神經網路可以 逼近閉區間上任意一個連續函數到任意指定的精度。

判別模型,直接輸出類別標簽,或者輸出類後驗概率p(y|x)
[ https://www.hu.com/question/268906476]
[ https://zhuanlan.hu.com/p/40024110]
[ https://zhuanlan.hu.com/p/159189617]

BN是在 batch這個維度上進行歸一化,GN是計算channel方向每個group的均值方差.

檢測結果與 Ground Truth 的交集比上它們的並集,即為檢測的准確率 IoU

內存/顯存佔用;模型收斂速度等

Hessian矩陣是n*n, 在高維情況下這個矩陣非常大,計算和存儲都是問題。

mini-batch太小會導致收斂變慢,太大容易陷入sharp minima,泛化性不好。

可以把dropout看成是 一種ensemble方法,每次做完dropout相當於從原網路中找到一個更瘦的網路。

pooling操作雖然能增大感受野,但是會丟失一些信息。空洞卷積在卷積核中插入權重為0的值,因此每次卷積中會skip掉一些像素點;

空洞卷積增大了卷積輸出每個點的感受野,並且不像pooling會丟失信息,在圖像需要全局信息或者需要較長sequence依賴的語音序列問題上有著較廣泛的應用。

表達式為:

使用BN的原因是網路訓練中每一層不斷改變的參數會導致後續每一層輸入的分布發生變化,而學習的過程又要使每一層去適應輸入的分布,因此不得不降低網路的學習率,並且要小心得初始化(internal covariant shift)
如果僅通過歸一化方法使得數據具有零均值和單位方差,則會降低層的表達能力(如使用Sigmoid函數時,只使用線性區域)
BN的具體過程(注意第三個公式中分母要加上epsilon)

最好的解釋是通過1 * 1卷積核能實現多個channel間的解耦合,解耦cross-channel correlation和spatial correlation。
【但是因為解耦不徹底,因此後續有了mobile net的組卷積方式和shuffle net組卷積方式】

由於 1×1 並不會改變 height 和 width,改變通道的第一個最直觀的結果,就是可以將原本的數據量進行增加或者減少。改變的只是 height × width × channels 中的 channels 這一個維度的大小而已。

1*1卷積核,可以在保持feature map尺度不變的(即不損失解析度)的前提下大幅增加非線性特性(利用後接的非線性激活函數),把網路做的很deep。

備註:一個filter對應卷積後得到一個feature map,不同的filter(不同的weight和bias),卷積以後得到不同的feature map,提取不同的特徵,得到對應的specialized neuron。

例子:使用1x1卷積核,實現降維和升維的操作其實就是channel間信息的線性組合變化,3x3,64channels的卷積核後面添加一個1x1,28channels的卷積核,就變成了3x3,28channels的卷積核,原來的64個channels就可以理解為跨通道線性組合變成了28channels,這就是通道間的信息交互

注意:只是在channel維度上做線性組合,W和H上是共享權值的sliding window

並不能說明這個模型無效導致模型不收斂的原因可能有

A. 在實際場景下,應盡量使用ADAM,避免使用SGD
B. 同樣的初始學習率情況下,ADAM的收斂速度總是快於SGD方法
C. 相同超參數數量情況下,比起自適應的學習率調整方式,SGD加手動調節通常會取得更好效果
D. 同樣的初始學習率情況下,ADAM比SGD容易過擬合

A.保證每一層的感受野不變,網路深度加深,使得網路的精度更高
B.使得每一層的感受野增大,學習小特徵的能力變大
C.有效提取高層語義信息,且對高層語義進行加工,有效提高網路准確度
D.利用該結構有效減輕網路的權重

A.計算簡單
B.非線性
C.具有飽和區

D.幾乎處處可微
【relu函數在0處是不可微的。】

A.Adam的收斂速度比RMSprop慢
B.相比於SGD或RMSprop等優化器,Adam的收斂效果是最好的
C.對於輕量級神經網路,使用Adam比使用RMSprop更合適
D.相比於Adam或RMSprop等優化器,SGD的收斂效果是最好的
【SGD通常訓練時間更長,容易陷入鞍點,但是在好的初始化和學習率調度方案的情況下,結果更可靠。如果在意更快的收斂,並且需要訓練較深較復雜的網路時,推薦使用學習率自適應的優化方法。】

A.使用ReLU做為激活函數,可有效地防止梯度爆炸
B.使用Sigmoid做為激活函數,較容易出現梯度消失
C.使用Batch Normalization層,可有效的防止梯度爆炸
D.使用參數weight decay,在一程度上可防止模型過擬合

對結果存疑。認為二者皆可防止。

A.SGD
B.FTRL
C.RMSProp
D.L-BFGS

L-BFGS(Limited-memory BFGS,內存受限擬牛頓法)方法:
所有的數據都會參與訓練,演算法融入方差歸一化和均值歸一化。大數據集訓練DNN,容易參數量過大 (牛頓法的進化版本,尋找更好的優化方向,減少迭代輪數)從LBFGS演算法的流程來看,其整個的核心的就是如何快速計算一個Hesse的近似:重點一是近似,所以有了LBFGS演算法中使用前m個近似下降方向進行迭代的計算過程;重點二是快速,這個體現在不用保存Hesse矩陣上,只需要使用一個保存後的一階導數序列就可以完成,因此不需要大量的存儲,從而節省了計算資源;重點三,是在推導中使用秩二校正構造了一個正定矩陣,即便這個矩陣不是最優的下降方向,但至少可以保證函數下降。
FTRL(Follow-the-regularized-Leader)是一種適用於處理超大規模數據的,含大量稀疏特徵的在線學習的常見優化演算法,方便實用,而且效果很好,常用於更新在線的CTR預估模型;FTRL在處理帶非光滑正則項(如L1正則)的凸優化問題上表現非常出色,不僅可以通過L1正則控制模型的稀疏度,而且收斂速度快;

A.LSTM在一定程度上解決了傳統RNN梯度消失或梯度爆炸的問題
B.CNN相比於全連接的優勢之一是模型復雜度低,緩解過擬合
C.只要參數設置合理,深度學習的效果至少應優於隨機演算法
D.隨機梯度下降法可以緩解網路訓練過程中陷入鞍點的問題

實際上,現在有很多針對小目標的措施和改良,如下:

最常見的是Upsample來Rezie網路輸入圖像的大小;

用dilated/astrous等這類特殊的卷積來提高檢測器對解析度的敏感度;(空洞卷積是針對圖像語義分割問題中下采樣會降低圖像解析度、丟失信息而提出的一種卷積思路。利用添加空洞擴大感受野,讓原本3 x3的卷積核,在相同參數量和計算量下擁有5x5(dilated rate =2)或者更大的感受野,從而無需下采樣。在保持參數個數不變的情況下增大了卷積核的感受野)

有比較直接的在淺層和深層的Feature Map上直接各自獨立做預測的,這個就是我們常說的尺度問題。

用FPN這種把淺層特徵和深層特徵融合的,或者最後在預測的時候,用淺層特徵和深層特徵一起預測;

SNIP(Scale Normalization for Image Pyramids)主要思路:

在訓練和反向傳播更新參數時,只考慮那些在指定的尺度范圍內的目標,由此提出了一種特別的多尺度訓練方法。

❸ 都快2021年了,演算法崗位應該怎樣准備面試

說到演算法崗位,現在網上的第一反應可能就是內卷,演算法崗位也號稱是內卷最嚴重的崗位。針對這個問題,其實之前我也有寫過相關的文章。這個崗位競爭激烈不假,但我個人覺得稱作內卷有些過了。就我個人的感覺,這幾年的一個大趨勢是從迷茫走向清晰。

早在2015年我在阿里媽媽實習的時候,那個時候我覺得其實對於演算法工程師這個崗位的招聘要求甚至包括工作內容其實業內是沒有一個統一的標準的。可以認為包括各大公司其實對這個崗位具體的工作內容以及需要的候選人的能力要求都不太一致,不同的面試官有不同的風格,也有不同的標准。

我舉幾個例子,第一個例子是我當初實習面試的時候,因為是本科生,的確對機器學習這個領域了解非常非常少,可以說是幾乎沒有。但是我依然通過了,通過的原因也很簡單,因為有acm的獲獎背景,面試的過程當中主要也都是一些演算法題,都還算是答得不錯。但是在交叉面試的時候,一位另一個部門的總監就問我有沒有這塊的經驗?我很明確地說了,沒有,但是我願意學。

接著他告訴我,演算法工程師的工作內容主要和機器學習相關,因此機器學習是基本的。當時我就覺得我涼了,然而很意外地是還是通過了面試。

核心能力

由於我已經很久沒有接觸校招了,所以也很難說校招面試應該怎麼樣准備,只能說說如果是我來招聘,我會喜歡什麼樣的學生。也可以理解成我理解的一個合格優秀的演算法工程師應該有的能力。

模型理解

演算法工程師和模型打交道,那麼理解模型是必須的。其實不用說每一個模型都精通,這沒有必要,面試的時候問的模型也不一定用得到。但更多地是看重這個人在學習的時候的習慣,他是淺嘗輒止呢,還是會刨根究底,究竟能夠學到怎樣的地步。

在實際的工作當中我們可能會面臨各種各樣的情況,比如說新加了特徵但是沒有效果,比如升級了模型效果反而變差了等等,這些情況都是有可能發生的。當我們遇到這些情況之後,需要我們根據已知的信息來推理和猜測導致的原因從而針對性的採取相應的手段。因此這就需要我們對當前的模型有比較深入地了解,否則推導原因做出改進也就無從談起。

所以面試的時候問起哪個模型都不重要,重要的是你能不能體現出你有過深入的研究和理解。

數據分析

演算法工程師一直和數據打交道,那麼分析數據、清洗數據、做數據的能力也必不可少。說起來簡單的數據分析,這當中其實牽扯很多,簡單來說至少有兩個關鍵點。

第一個關鍵點是處理數據的能力,比如SQL、hive、spark、MapRece這些常用的數據處理的工具會不會,會多少?是一個都不會呢,還是至少會一點。由於各個公司的技術棧不同,一般不會抱著候選人必須剛好會和我們一樣的期待去招人,但是候選人如果一無所知肯定也是不行的。由於學生時代其實很少接觸這種實踐的內容,很多人對這些都一無所知,如果你會一兩個,其實就是加分項。

第二個關鍵點是對數據的理解力,舉個簡單的例子,比如說現在的樣本訓練了模型之後效果不好,我們要分析它的原因,你該怎麼下手?這個問題日常當中經常遇到,也非常考驗演算法工程師對數據的分析能力以及他的經驗。數據是水,模型是船,我們要把船駛向遠方,只懂船隻構造是不行的,還需要對水文、天象也有了解。這樣才能從數據當中捕捉到trick,對一些現象有更深入的看法和理解。

工程能力

雖然是演算法工程師,但是並不代表工程能力不重要,相反工程能力也很重要。當然這往往不會成為招聘的硬性指標, 比如考察你之前做過什麼工程項目之類的。但是會在你的代碼測試環節有所體現,你的代碼風格,你的編碼能力都是你面試的考察點之一。

並不只是在面試當中如此,在實際工作當中,工程能力也很關鍵。往小了說可以開發一些工具、腳本方便自己或者是團隊當中其他人的日常工作,往大了說,你也可以成為團隊當中的開發擔當,負責其團隊當中最工程的工作。比如說復現一篇paper,或者是從頭擼一個模型。這其實也是一種差異化競爭的手段,你合理地負擔起別人負擔不了的工作,那麼自然就會成為你的業績。

時代在變化,行業在發展,如今的校招會問些什麼早已經和當年不同了。但不管怎麼說,這個崗位以及面試官對於人才的核心訴求幾乎是沒有變過的,我們從核心出發去構建簡歷、准備面試,相信一定可以有所收獲。

❹ autox面試難度

autox面試難度一般。

autox(控制演算法工程師)面試是一對一技術面,面試是一個部門主管,面試開始先確認身份,然後讓自我介紹,然後開始對著簡歷問問題,項目、技能等,然後聊崗位了解情況,期望薪資、工作城市、最後開始對著簡歷問問題,第一個讓解釋項目結果,用到的軟體工具及各自的作用。也不算很難,一般難度。

面試簡介:

面試是通過書面、面談或線上交流(視頻、電話)的形式來考察一個人的工作能力與綜合素質,通過面試可以初步判斷應聘者是否可以融入自己的團隊。在特定場景下,以面試官對應聘者的交談與觀察為主要手段,由表及裡測評應聘者的知識、能力、經驗和綜合素質等有關素質的考試活動。

面試是公司挑選職工的一種重要方法。面試給公司和應聘者提供了進行雙向交流的機會,能使公司和應聘者之間相互了解,從而雙方都可更准確做出聘用與否、受聘與否的決定。

以上內容參考網路-面試

閱讀全文

與神州演算法工程師面試相關的資料

熱點內容
mysql命令行版本 瀏覽:303
如何進入itunes找文件夾 瀏覽:832
CAD中重復命令使用 瀏覽:477
心智pdf 瀏覽:475
網站電台直播間源碼 瀏覽:852
文件夾14c和18c的區別 瀏覽:34
android隱式調用 瀏覽:667
plc的編程指令邊沿繼電器 瀏覽:723
voc文件夾 瀏覽:862
租廣東聯通伺服器注意什麼雲空間 瀏覽:932
javascript高級程序設計pdf 瀏覽:291
pwm單片機原理 瀏覽:346
ai演算法在線修復圖片 瀏覽:979
scratch編程中如何做射擊游戲 瀏覽:478
at89c51編程器 瀏覽:343
項目經理叫醒程序員 瀏覽:343
autocad旋轉命令 瀏覽:661
手機版wpsoffice怎麼打包文件夾 瀏覽:580
在成都學車用什麼app 瀏覽:819
grep命令管道 瀏覽:426