導航:首頁 > 源碼編譯 > 數據結構常見演算法

數據結構常見演算法

發布時間:2023-08-17 16:55:08

① 一文帶你認識30個重要的數據結構和演算法

數組是最簡單也是最常見的數據結構。它們的特點是可以通過索引(位置)輕松訪問元素。

它們是做什麼用的?

想像一下有一排劇院椅。每把椅子都分配了一個位置(從左到右),因此每個觀眾都會從他將要坐的椅子上分配一個號碼。這是一個數組。將問題擴展到整個劇院(椅子的行和列),您將擁有一個二維數組(矩陣)。

特性

鏈表是線性數據結構,就像數組一樣。鏈表和數組的主要區別在於鏈表的元素不存儲在連續的內存位置。它由節點組成——實體存儲當前元素的值和下一個元素的地址引用。這樣,元素通過指針鏈接。

它們是做什麼用的?

鏈表的一個相關應用是瀏覽器的上一頁和下一頁的實現。雙鏈表是存儲用戶搜索顯示的頁面的完美數據結構。

特性

堆棧是一種抽象數據類型,它形式化了受限訪問集合的概念。該限制遵循 LIFO(後進先出)規則。因此,添加到堆棧中的最後一個元素是您從中刪除的第一個元素。

堆棧可以使用數組或鏈表來實現。

它們是做什麼用的?

現實生活中最常見的例子是在食堂中將盤子疊放在一起。位於頂部的板首先被移除。放置在最底部的盤子是在堆棧中保留時間最長的盤子。

堆棧最有用的一種情況是您需要獲取給定元素的相反順序。只需將它們全部推入堆棧,然後彈出它們。

另一個有趣的應用是有效括弧問題。給定一串括弧,您可以使用堆棧檢查它們是否匹配。

特性

隊列是受限訪問集合中的另一種數據類型,就像前面討論的堆棧一樣。主要區別在於隊列是按照FIFO(先進先出)模型組織的:隊列中第一個插入的元素是第一個被移除的元素。隊列可以使用固定長度的數組、循環數組或鏈表來實現。

它們是做什麼用的?

這種抽象數據類型 (ADT) 的最佳用途當然是模擬現實生活中的隊列。例如,在呼叫中心應用程序中,隊列用於保存等待從顧問那裡獲得幫助的客戶——這些客戶應該按照他們呼叫的順序獲得幫助。

一種特殊且非常重要的隊列類型是優先順序隊列。元素根據與它們關聯的「優先順序」被引入隊列:具有最高優先順序的元素首先被引入隊列。這個 ADT 在許多圖演算法(Dijkstra 演算法、BFS、Prim 演算法、霍夫曼編碼 )中是必不可少的。它是使用堆實現的。

另一種特殊類型的隊列是deque 隊列(雙關語它的發音是「deck」)。可以從隊列的兩端插入/刪除元素。

特性

Maps (dictionaries)是包含鍵集合和值集合的抽象數據類型。每個鍵都有一個與之關聯的值。

哈希表是一種特殊類型的映射。它使用散列函數生成一個散列碼,放入一個桶或槽數組:鍵被散列,結果散列指示值的存儲位置。

最常見的散列函數(在眾多散列函數中)是模常數函數。例如,如果常量是 6,則鍵 x 的值是x%6。

理想情況下,散列函數會將每個鍵分配給一個唯一的桶,但他們的大多數設計都採用了不完善的函數,這可能會導致具有相同生成值的鍵之間發生沖突。這種碰撞總是以某種方式適應的。

它們是做什麼用的?

Maps 最著名的應用是語言詞典。語言中的每個詞都為其指定了定義。它是使用有序映射實現的(其鍵按字母順序排列)。

通訊錄也是一張Map。每個名字都有一個分配給它的電話號碼。

另一個有用的應用是值的標准化。假設我們要為一天中的每一分鍾(24 小時 = 1440 分鍾)分配一個從 0 到 1439 的索引。哈希函數將為h(x) = x.小時*60+x.分鍾。

特性

術語:

因為maps 是使用自平衡紅黑樹實現的(文章後面會解釋),所以所有操作都在 O(log n) 內完成;所有哈希表操作都是常量。

圖是表示一對兩個集合的非線性數據結構:G={V, E},其中 V 是頂點(節點)的集合,而 E 是邊(箭頭)的集合。節點是由邊互連的值 - 描述兩個節點之間的依賴關系(有時與成本/距離相關聯)的線。

圖有兩種主要類型:有向圖和無向圖。在無向圖中,邊(x, y)在兩個方向上都可用:(x, y)和(y, x)。在有向圖中,邊(x, y)稱為箭頭,方向由其名稱中頂點的順序給出:箭頭(x, y)與箭頭(y, x) 不同。

它們是做什麼用的?

特性

圖論是一個廣闊的領域,但我們將重點介紹一些最知名的概念:

一棵樹是一個無向圖,在連通性方面最小(如果我們消除一條邊,圖將不再連接)和在無環方面最大(如果我們添加一條邊,圖將不再是無環的)。所以任何無環連通無向圖都是一棵樹,但為了簡單起見,我們將有根樹稱為樹。

根是一個固定節點,它確定樹中邊的方向,所以這就是一切「開始」的地方。葉子是樹的終端節點——這就是一切「結束」的地方。

一個頂點的孩子是它下面的事件頂點。一個頂點可以有多個子節點。一個頂點的父節點是它上面的事件頂點——它是唯一的。

它們是做什麼用的?

我們在任何需要描繪層次結構的時候都使用樹。我們自己的家譜樹就是一個完美的例子。你最古老的祖先是樹的根。最年輕的一代代表葉子的集合。

樹也可以代表你工作的公司中的上下級關系。這樣您就可以找出誰是您的上級以及您應該管理誰。

特性

二叉樹是一種特殊類型的樹:每個頂點最多可以有兩個子節點。在嚴格二叉樹中,除了葉子之外,每個節點都有兩個孩子。具有 n 層的完整二叉樹具有所有2ⁿ-1 個可能的節點。

二叉搜索樹是一棵二叉樹,其中節點的值屬於一個完全有序的集合——任何任意選擇的節點的值都大於左子樹中的所有值,而小於右子樹中的所有值。

它們是做什麼用的?

BT 的一項重要應用是邏輯表達式的表示和評估。每個表達式都可以分解為變數/常量和運算符。這種表達式書寫方法稱為逆波蘭表示法 (RPN)。這樣,它們就可以形成一個二叉樹,其中內部節點是運算符,葉子是變數/常量——它被稱為抽象語法樹(AST)。

BST 經常使用,因為它們可以快速搜索鍵屬性。AVL 樹、紅黑樹、有序集和映射是使用 BST 實現的。

特性

BST 有三種類型的 DFS 遍歷:

所有這些類型的樹都是自平衡二叉搜索樹。不同之處在於它們以對數時間平衡高度的方式。

AVL 樹在每次插入/刪除後都是自平衡的,因為節點的左子樹和右子樹的高度之間的模塊差異最大為 1。 AVL 以其發明者的名字命名:Adelson-Velsky 和 Landis。

在紅黑樹中,每個節點存儲一個額外的代表顏色的位,用於確保每次插入/刪除操作後的平衡。

在 Splay 樹中,最近訪問的節點可以快速再次訪問,因此任何操作的攤銷時間復雜度仍然是 O(log n)。

它們是做什麼用的?

AVL 似乎是資料庫理論中最好的數據結構。

RBT(紅黑樹) 用於組織可比較的數據片段,例如文本片段或數字。在 java 8 版本中,HashMap 是使用 RBT 實現的。計算幾何和函數式編程中的數據結構也是用 RBT 構建的。

在 Windows NT 中(在虛擬內存、網路和文件系統代碼中),Splay 樹用於緩存、內存分配器、垃圾收集器、數據壓縮、繩索(替換用於長文本字元串的字元串)。

特性

最小堆是一棵二叉樹,其中每個節點的值都大於或等於其父節點的值:val[par[x]]

② 數據結構演算法有哪些

數據結構是一門研究非數值計算的程序設計問題中的操作對象,以及它們之間的關系和操作等相關問題的學科。

可以理解為:程序設計 = 數據結構 + 演算法

數據結構演算法具有五個基本特徵:輸入、輸出、有窮性、確定性和可行性。

1、輸入:一個演算法具有零個或者多個輸出。以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件。後面一句話翻譯過來就是,如果一個演算法本身給出了初始條件,那麼可以沒有輸出。比如,列印一句話:NSLog(@"你最牛逼!");

2、輸出:演算法至少有一個輸出。也就是說,演算法一定要有輸出。輸出的形式可以是列印,也可以使返回一個值或者多個值等。也可以是顯示某些提示。

3、有窮性:演算法的執行步驟是有限的,演算法的執行時間也是有限的。

4、確定性:演算法的灶舉每個步驟都有確定的含義,不會出現二義性。

5、可行性:演算法是可用的,也就是能夠解決當前問題。慧辯弊

數據結果的基本演算法有:

1、圖搜索(廣度優先、深度優先)深度優前族先特別重要

2、排序

3、動態規劃

4、匹配演算法和網路流演算法

5、正則表達式和字元串匹配

6、三路劃分-快速排序

7、合並排序(更具擴展性,復雜度類似快速排序)

8、DF/BF 搜索 (要知道使用場景)

9、Prim / Kruskal (最小生成樹)

10、Dijkstra (最短路徑演算法)

11、選擇演算法

③ 數據結構排序演算法有哪些常用的

最常用的是快速排序,基數排序,計數排序,歸並排序,堆排序,(偶爾還有插入排序)
都有各自的應用,快排就是單純的快,但是特殊數據下復雜度會退化
基數排序可以配合一些特定的演算法,譬如後綴數組的構建
計數排序簡單且常用,通常排序值域小但是數據量大的情況
歸並直接用來排序並不多,但是可以用來求解一些其他問題,本身的思想也非常重要,有很多拓展的演算法(不是排序演算法)
堆排序勝在穩定,不論數據如何最壞都是O(nlogn),一般情況比快速排序慢些,但是極端情況下表現十分優秀,常用來配合快速排序,優化其穩定性
插入排序適合極少量數據的排序(幾個到十幾個),速度要比這些高級演算法快一些

④ 計算機考研:數據結構常用演算法解析(7)

第七章:
對於無向圖,e的范圍是:
數據結構中所討論的圖都是簡單圖,任意兩結點間不會有雙重的邊。
對於有向圖,e的范圍是:
圖的各種存儲結構
鄰接矩陣很方便訪問任意兩點的邊,但是不方便計算其鄰接點。在深度和廣度遍歷中廣泛的需要求某點的鄰接點。所以鄰接矩陣只在Floyed和Prim和Dijstra中採用。
鄰接表能很方便的求某頂點的鄰接點,索引對於與遍歷有關的演算法大多都採用鄰接表。如深度、廣度、拓撲排序、關鍵路徑。但他也有不足的地方,就是不方便求入度或是那些薯早握點可以到他的操作。所以有人引進逆鄰接表。最後人們把這兩種表結合到一起就是十字鏈表和鄰接多重表。一個是存儲有向圖,另一個是存儲無向圖。
在十字鏈睜歷表和鄰接多重表很方便求鄰接點的操作和對應的逆操作。所以實際應用中,凡是能用鄰接表實現的一定能用十字鏈表和鄰接多重表實現。並且它們的存儲效率更高。
1.鄰接矩陣(有向圖和無向圖和網)又稱為數組表示法
typedef struct
{ vextype vexs[maxn]; ∥頂點存儲空間∥
adjtype A[maxn][maxn]; ∥鄰接矩陣∥
int vexnum,arcnum; //圖的頂點數和邊數
GraphKind Kind; //圖的類型
} mgraph;
2.鄰接表(有向圖和無向圖和網)
typedef struct node ∥邊
{ int adj; int w; ∥鄰接點、權∥
struct node *next; ∥指向下一弧或邊∥
}linknode;
typedef struct ∥頂點類型∥
{ vtype data; ∥頂點值域∥
linknode *farc; ∥指向與本頂點關聯的第一條弧或邊∥
}Vnode;
typedef struct
{
Vnode G[maxn]; ∥頂點表∥
int vexnum,arcnum;
GraphKind kind;
}ALGraph;
adjvexnextarcinfo
邊結點
datafirstarc
頂點結點
3.十字鏈表(有向圖和有向網)
headvextaivexhlinktlinkinfo
邊結點
datafirstinfirstout
頂點結點
4.鄰接多重表(無向圖)
markivexjvexilinkjlinkinfo
邊結點
datafirstedge
頂點結點
有向無環圖(DAG):是描述含有公共子式的表達式的有效工具。二叉樹也能表示表達式,但是利用有向無環圖可以實現對相同子式的共享,從而節省存儲空間。
頂點的度:
無向圖:某頂點V的度記為D(V),代表與V相關聯的邊的條數
有向圖:頂點V的度D(V)=ID(V)+OD(V)
強連通分量:在有向圖中,若圖中任意兩頂點間都存在路徑,則稱其是強連通圖。圖中極大 強連通子圖稱之為強連通分量
「極大」在這里指的是:往一個連通分量中再加入頂點和邊,就構不成原圖中的一個 連通子圖,即連通分量是一個最大集的連通子圖。有向圖的連通就是指該有向圖是強連通的。

考研有疑問、不知道如何總結考研考點內容、不清楚數慶考研報名當地政策,點擊底部咨詢官網,免費領取復習資料:https://www.87dh.com/xl/

⑤ 數據結構中有哪些基本演算法

數據結構中最基本的演算法有:查找、排序、快速排序,堆排序,歸並排序,,二分搜索演算法
等等。

1、用的最多也是最簡單的數據結構是線性表。

2、有前途的又難數據結構是圖 。

3、常用的80%演算法是排序和查找。

⑥ 數據結構 java開發中常用的排序演算法有哪些

排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。

主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序

一、冒泡(Bubble)排序

----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。

二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。

三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。

四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。

五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。

七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------

堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。

堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。

堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。

八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。

閱讀全文

與數據結構常見演算法相關的資料

熱點內容
at89c51編程器 瀏覽:339
項目經理叫醒程序員 瀏覽:342
autocad旋轉命令 瀏覽:660
手機版wpsoffice怎麼打包文件夾 瀏覽:579
在成都學車用什麼app 瀏覽:818
grep命令管道 瀏覽:426
java修改重啟 瀏覽:567
單片機供電方案 瀏覽:770
airpodspro一代怎麼連接安卓 瀏覽:218
豌豆莢app上有什麼游戲 瀏覽:283
公路商店app標簽選什麼 瀏覽:338
linuxoracle命令行登錄 瀏覽:227
android深度休眠 瀏覽:172
php微信開發例子 瀏覽:845
醫得app登錄密碼是什麼 瀏覽:142
spring開發伺服器地址 瀏覽:411
伺服器上如何查看伺服器的埠 瀏覽:678
單片機伺服器編譯 瀏覽:770
單口usb列印機伺服器是什麼 瀏覽:859
戰地五開伺服器要什麼條件 瀏覽:956