導航:首頁 > 源碼編譯 > python貪心演算法找紙幣

python貪心演算法找紙幣

發布時間:2023-08-19 22:25:34

『壹』 貪心思想

在學習數據結構的時候,我們已經見過了貪心思想在Prim和Kruskal中的完美應用,貪心思想因為其的簡潔在演算法中經常會被用到,有的時候在生活中,我們也會無意中使用到l貪心演算法。比如在去shopping時,經常需要進行找零錢的過程,我們總是不自覺的先把大的找出來。

那麼什麼是貪心思想?

貪心演算法總是作出在當前看來最好的選擇,也就是說貪心演算法並不從整體最優考慮,它所作出的選擇只是在某種意義上的局部最優選擇。

只有在滿足最優子結構的情況下貪心演算法得到的結果才是最優結果。

比如找錢的問題,我要給你一百,那麼我盡可能每一次給你最多的。

或者比如磁碟的最優存儲問題,所謂貪心選擇性質是指所求問題的整體最優解可以通過一系列局部最優的選擇,即貪心選擇來達到。

Prim和kruskal演算法都是每次選擇最小的邊納入生成樹。

所謂貪心選擇性質是指所求問題的整體最優解可以通過一系列局部最優的選擇,即貪心選擇來達到。這也是貪心問題和動態規劃問題的主要區別。

在n行m列的正整數矩陣中,要求從每一行中選一個數,使得選出的n個數的和最大。

可運用貪心策略,選n次,每一次選相應行中的最大值即可。

但是,在一個n*m的方格陣中,每一格子賦予一個數,規定每次移動時只能向上或向右,現試找出一條路徑,使其從左下角至右上角所經過的權值之和最大。

同樣考慮貪心策略,從左下角向右上角移動,每次移動選擇權值較大的一個方向。

以2*3矩陣為例,採用貪心的策略得到的是1,3,4,6和為14但是實際的最優結果為1,2,100,6和為109.

所以說貪心演算法並不是總是可行,證明當前問題存在貪心選擇性質(全局最優解可以通過局部最優貪心選擇達到)和最優子結構性質(問題的最優解包含了其子問題的最優解)。所以貪心問題如果當前的選擇不會干擾之後的選擇,則不會出現問題。

其他的情況就需要進行證明,證明的最好辦法就是將最小子問題進行一步步的合並,直到最後還原為最後的原問題,若所得到的解是總體最優的則可以使用貪心思想,否則不可以。

比如上面的問題,我們的走一步的最優解為1,3,然後我們判斷一次走兩步的最優解是否任然為1,3這個路徑,答案顯然不是,變為 1,2,100這個路徑,所以顯然不能使用貪心思想。

假設1元、2元、5元、10元、20元、50元、100元的紙幣分別有c0, c1, c2, c3, c4, c5, c6張。現在要用這些錢來支付K元,至少要用多少張紙幣?用貪心演算法的思想,很顯然,每一步盡可能用面值大的紙幣即可。在日常生活中我們自然而然也是這么做的。

有n個需要在同一天使用同一個教室的活動a1,a2,…,an,教室同一時刻只能由一個活動使用。每個活動ai都有一個開始時間si和結束時間fi 。一旦被選擇後,活動ai就占據半開時間區間[si,fi)。如果[si,fi]和[sj,fj]互不重疊,ai和aj兩個活動就可以被安排在這一天。該問題就是要安排這些活動使得盡量多的活動能不沖突的舉行。

部分背包問題, 有n個物體,第i個物體重量為wi,價值為vi,在總重量不超過C的情況下,讓總價值盡可能的高。每個物體都可以只取一部分。

我們可以考慮重量和價值的比值作為單價。

『貳』 python 演算法種類

python雖然具備很多高級模塊,也是自帶電池的編程語言,但是要想做一個合格的程序員,基本的演算法還是需要掌握,本文主要介紹列表的一些排序演算法
遞歸是演算法中一個比較核心的概念,有三個特點,1 調用自身 2 具有結束條件 3 代碼規模逐漸減少

『叄』 演算法怎麼學

貪心演算法的定義:

貪心演算法是指在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,只做出在某種意義上的局部最優解。貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。

解題的一般步驟是:

1.建立數學模型來描述問題;

2.把求解的問題分成若干個子問題;

3.對每一子問題求解,得到子問題的局部最優解;

4.把子問題的局部最優解合成原來問題的一個解。

如果大家比較了解動態規劃,就會發現它們之間的相似之處。最優解問題大部分都可以拆分成一個個的子問題,把解空間的遍歷視作對子問題樹的遍歷,則以某種形式對樹整個的遍歷一遍就可以求出最優解,大部分情況下這是不可行的。貪心演算法和動態規劃本質上是對子問題樹的一種修剪,兩種演算法要求問題都具有的一個性質就是子問題最優性(組成最優解的每一個子問題的解,對於這個子問題本身肯定也是最優的)。動態規劃方法代表了這一類問題的一般解法,我們自底向上構造子問題的解,對每一個子樹的根,求出下面每一個葉子的值,並且以其中的最優值作為自身的值,其它的值舍棄。而貪心演算法是動態規劃方法的一個特例,可以證明每一個子樹的根的值不取決於下面葉子的值,而只取決於當前問題的狀況。換句話說,不需要知道一個節點所有子樹的情況,就可以求出這個節點的值。由於貪心演算法的這個特性,它對解空間樹的遍歷不需要自底向上,而只需要自根開始,選擇最優的路,一直走到底就可以了。

話不多說,我們來看幾個具體的例子慢慢理解它:

1.活動選擇問題

這是《演算法導論》上的例子,也是一個非常經典的問題。有n個需要在同一天使用同一個教室的活動a1,a2,…,an,教室同一時刻只能由一個活動使用。每個活動ai都有一個開始時間si和結束時間fi 。一旦被選擇後,活動ai就占據半開時間區間[si,fi)。如果[si,fi]和[sj,fj]互不重疊,ai和aj兩個活動就可以被安排在這一天。該問題就是要安排這些活動使得盡量多的活動能不沖突的舉行。例如下圖所示的活動集合S,其中各項活動按照結束時間單調遞增排序。

關於貪心演算法的基礎知識就簡要介紹到這里,希望能作為大家繼續深入學習的基礎。

『肆』 python裡面什麼是貪婪

Python裡面的貪婪演算法(又稱貪心演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,/不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。

貪心演算法不是搏孫對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。

基本思路

思想

貪心演算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止 。貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。

貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。

基本思路

思想

貪心演算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止 。貪心演算法彎銀鎮(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。

貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。

基本思路

思想

貪心演算法的基本思路埋粗是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止 。

『伍』 程序員演算法基礎——貪心演算法

貪心是人類自帶的能力,貪心演算法是在貪心決策上進行統籌規劃的統稱。

比如一道常見的演算法筆試題---- 跳一跳

我們自然而然能產生一種解法:盡可能的往右跳,看最後是否能到達。
本文即是對這種貪心決策的介紹。

狹義的貪心演算法指的是解最優化問題的一種特殊方法,解決過程中總是做出當下最好的選擇,因為具有最優子結構的特點,局部最優解可以得到全局最優解;這種貪心演算法是動態規劃的一種特例。 能用貪心解決的問題,也可以用動態規劃解決。

而廣義的貪心指的是一種通用的貪心策略,基於當前局面而進行貪心決策。以 跳一跳 的題目為例:
我們發現的題目的核心在於 向右能到達的最遠距離 ,我們用maxRight來表示;
此時有一種貪心的策略:從第1個盒子開始向右遍歷,對於每個經過的盒子,不斷更新maxRight的值。

貪心的思考過程類似動態規劃,依舊是兩步: 大事化小 小事化了
大事化小:
一個較大的問題,通過找到與子問題的重疊,把復雜的問題劃分為多個小問題;
小事化了:
從小問題找到決策的核心,確定一種得到最優解的策略,比如跳一跳中的 向右能到達的最遠距離

在證明局部的最優解是否可以推出全局最優解的時候,常會用到數學的證明方式。

如果是動態規劃:
要湊出m元,必須先湊出m-1、m-2、m-5、m-10元,我們用dp[i]表示湊出i元的最少紙幣數;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根據以上遞推方程和初始化信息,可以容易推出dp[1~m]的所有值。

似乎有些不對? 平時我們找零錢有這么復雜嗎?
從貪心演算法角度出發,當m>10且我們有10元紙幣,我們優先使用10元紙幣,然後再是5元、2元、1元紙幣。
從日常生活的經驗知道,這么做是正確的,但是為什麼?

假如我們把題目變成這樣,原來的策略還能生效嗎?

接下來我們來分析這種策略:
已知對於m元紙幣,1,2,5元紙幣使用了a,b,c張,我們有a+2b+5c=m;
假設存在一種情況,1、2、5元紙幣使用數是x,y,z張,使用了更少的5元紙幣(z<c),且紙幣張數更少(x+y+z<a+b+c),即是用更少5元紙幣得到最優解。
我們令k=5*(c-z),k元紙幣需要floor(k/2)張2元紙幣,k%2張1元紙幣;(因為如果有2張1元紙幣,可以使用1張2元紙幣來替代,故而1元紙幣只能是0張或者1張)
容易知道,減少(c-z)張5元紙幣,需要增加floor(5*(c-z)/2)張2元紙幣和(5*(c-z))%2張紙幣,而這使得x+y+z必然大於a+b+c。
由此我們知道不可能存在使用更少5元紙幣的更優解。
所以優先使用大額紙幣是一種正確的貪心選擇。

對於1、5、7元紙幣,比如說要湊出10元,如果優先使用7元紙幣,則張數是4;(1+1+1+7)
但如果只使用5元紙幣,則張數是2;(5+5)
在這種情況下,優先使用大額紙幣是不正確的貪心選擇。(但用動態規劃仍能得到最優解)

如果是動態規劃:
前i秒的完成的任務數,可以由前面1~i-1秒的任務完成數推過來。
我們用 dp[i]表示前i秒能完成的任務數
在計算前i秒能完成的任務數時,對於第j個任務,我們有兩種決策:
1、不執行這個任務,那麼dp[i]沒有變化;
2、執行這個任務,那麼必須騰出來(Sj, Tj)這段時間,那麼 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如說對於任務j如果是第5秒開始第10秒結束,如果i>=10,那麼有 dp[i]=max(dp[i], dp[5] + 1); (相當於把第5秒到第i秒的時間分配給任務j)

再考慮貪心的策略,現實生活中人們是如何安排這種多任務的事情?我換一種描述方式:

我們自然而然會想到一個策略: 先把結束時間早的兼職給做了!
為什麼?
因為先做完這個結束時間早的,能留出更多的時間做其他兼職。
我們天生具備了這種優化決策的能力。

這是一道 LeetCode題目 。
這個題目不能直接用動態規劃去解,比如用dp[i]表示前i個人需要的最少糖果數。
因為(前i個人的最少糖果數)這種狀態表示會收到第i+1個人的影響,如果a[i]>a[i+1],那麼第i個人應該比第i+1個人多。
即是 這種狀態表示不具備無後效性。

如果是我們分配糖果,我們應該怎麼分配?
答案是: 從分數最低的開始。
按照分數排序,從最低開始分,每次判斷是否比左右的分數高。
假設每個人分c[i]個糖果,那麼對於第i個人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默認為0,如果在計算i的時候,c[i-1]為0,表示i-1的分數比i高)
但是,這樣解決的時間復雜度為 O(NLogN) ,主要瓶頸是在排序。
如果提交,會得到 Time Limit Exceeded 的提示。

我們需要對貪心的策略進行優化:
我們把左右兩種情況分開看。
如果只考慮比左邊的人分數高時,容易得到策略:
從左到右遍歷,如果a[i]>a[i-1],則有c[i]=c[i-1]+1;否則c[i]=1。

再考慮比右邊的人分數高時,此時我們要從數組的最右邊,向左開始遍歷:
如果a[i]>a[i+1], 則有c[i]=c[i+1]+1;否則c[i]不變;

這樣講過兩次遍歷,我們可以得到一個分配方案,並且時間復雜度是 O(N)

題目給出關鍵信息:1、兩個人過河,耗時為較長的時間;
還有隱藏的信息:2、兩個人過河後,需要有一個人把船開回去;
要保證總時間盡可能小,這里有兩個關鍵原則: 應該使得兩個人時間差盡可能小(減少浪費),同時船回去的時間也盡可能小(減少等待)。

先不考慮空船回來的情況,如果有無限多的船,那麼應該怎麼分配?
答案: 每次從剩下的人選擇耗時最長的人,再選擇與他耗時最接近的人。

再考慮只有一條船的情況,假設有A/B/C三個人,並且耗時A<B<C。
那麼最快的方案是:A+B去, A回;A+C去;總耗時是A+B+C。(因為A是最快的,讓其他人來回時間只會更長, 減少等待的原則

如果有A/B/C/D四個人,且耗時A<B<C<D,這時有兩種方案:
1、最快的來回送人方式,A+B去;A回;A+C去,A回;A+D去; 總耗時是B+C+D+2A (減少等待原則)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;總耗時是 3B+D+A (減少浪費原則)
對比方案1、2的選擇,我們發現差別僅在A+C和2B;
為何方案1、2差別里沒有D?
因為D最終一定要過河,且耗時一定為D。

如果有A/B/C/D/E 5個人,且耗時A<B<C<D<E,這時如何抉擇?
仍是從最慢的E看。(參考我們無限多船的情況)
方案1,減少等待;先送E過去,然後接著考慮四個人的情況;
方案2,減少浪費;先送E/D過去,然後接著考慮A/B/C三個人的情況;(4人的時候的方案2)

到5個人的時候,我們已經明顯發了一個特點:問題是重復,且可以由子問題去解決。
根據5個人的情況,我們可以推出狀態轉移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根據我們考慮的1、2、3、4個人的情況,我們分別可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);

由上述的狀態轉移方程和初始化值,我們可以推出dp[n]的值。

貪心的學習過程,就是對自己的思考進行優化。
是把握已有信息,進行最優化決策。
這里還有一些收集的 貪心練習題 ,可以實踐練習。
這里 還有在線分享,歡迎報名。

『陸』 貪心演算法及其應用

求解一個問題時有多個步驟,每個步驟都選擇當下最優的那個解,而不用考慮整體的最優解。通常,當我們面對的問題擁有以下特點的時候,就可以考慮使用貪心演算法。

比如,我們舉個例子,倉庫裡面總共有五種豆子,其對應的重量和總價值如下,現在我們有一個可以裝100KG重量的袋子,怎麼裝才能使得袋子中的豆子價值最大?

我們首先看看這個問題是否符合貪心演算法的使用場景?限制值是袋子100KG,期望值是袋子裡面的價值最高。所以是符合的。那麼我們嘗試著應用下貪心演算法的方法,每一個步驟都尋找當下的最優解,怎麼做呢?

把倉庫裡面的每種豆子價值除以重量,得出每種豆子的單價,那麼當下的最優解,肯定是盡可能最多地裝單價最貴的,也就是先把20KG的黃豆都裝上,然後再把30KG的綠豆都裝上,再裝50KG的紅豆,那麼此時正好裝滿袋子,總價值將是270元,這就是通過貪心演算法求解的答案。

貪心演算法的應用在這個問題上的求解是否是最優解需要一個很復雜的數學論證,我們不用那樣,只要心裡舉幾個例子,驗證下是否比它更好即可,如果舉不出例子,那麼就可以認為這就是最優解了。

雖然貪心演算法雖然在大部分實踐場景中都能得到最優解,但是並不能保證一定是最優解。比如在如下的有向帶權圖中尋找從S到T的最短路徑,那麼答案肯定就是S->A->E->T,總代價為1+4+4=9;

然而,實際上的最短路徑是S->B->D->T,總代價為6。

所以,不能所有這類問題都迷信貪心演算法的求解,但其作為一種演算法指導思想,還是很值得學習的。

除了以上袋子裝豆子的問題之外,還有很多應用場景。這種問題能否使用貪心演算法來解決的關鍵是你能否將問題轉換為貪心演算法適用的問題,即找到問題的限制值和期望值。

我們有m個糖果要分給n個孩子,n大於m,註定有的孩子不能分到糖果。其中,每個糖果的大小都不同,分別為S1,S2,S3...,Sm,每個孩子對糖果的需求也是不同的,為N1,N2,N3...,Nn,那麼我們如何分糖果,才能盡可能滿足最多數量孩子的需求?

這個問題中,限制值是糖果的數量m,期望值滿足最多的孩子需求。對於每個孩子,能用小的糖果滿足其需求,就不要用大的,避免浪費。所以我們可以給所有孩子的需求排個序,從需求最小的孩子開始,用剛好能滿足他的糖果來分給他,以此來分完所有的糖果。

我們有1元、5元、10元、20元、50元、100元紙幣各C1、C5、C10、C20、C50、C100張,現在要購買一個價值K元的東西,請問怎麼才能適用最少的紙幣?

這個問題應該不難,限制值是各個紙幣的張數,期望值是適用最少的紙幣。那麼我們就先用面值最大的100元去付錢,當再加一張100元就超過K時,就更換小面額的,直至正好為K元。

對於n個區間[L1,R1],[L2,R2]...[Ln,Rn],我們怎麼從中選出盡可能多的區間,使它們不相交?

我們需要把這個問題轉換為符合貪心演算法特點的問題,假設這么多區間的最左端點是Lmin,最右端點是Rmax,那麼問題就是在[Lmin,Rmax]中,選擇盡可能多的區間往裡面塞,並且保證它們不相交。這里,限制值就是區間[Lmin,Rmax],期望值就是盡可能多的區間。

我們的解決辦法就是每次從區間中選擇那種左端點>=已經覆蓋區間右邊端點的,且該區間右端點盡可能高小的。如此,我們可以讓未覆蓋區間盡可能地大,才能保證可以塞進去盡可能多的區間。

貪心演算法最重要的就是學會如何將要解決的問題抽象成適合貪心演算法特點的模型,找到限制條件和期望值,只要做好這一步,接下來的就比較簡單了。在平時我們不用刻意去記,多多練習類似的問題才是最有效的學習方法。

閱讀全文

與python貪心演算法找紙幣相關的資料

熱點內容
項目經理叫醒程序員 瀏覽:342
autocad旋轉命令 瀏覽:660
手機版wpsoffice怎麼打包文件夾 瀏覽:579
在成都學車用什麼app 瀏覽:818
grep命令管道 瀏覽:426
java修改重啟 瀏覽:567
單片機供電方案 瀏覽:770
airpodspro一代怎麼連接安卓 瀏覽:218
豌豆莢app上有什麼游戲 瀏覽:283
公路商店app標簽選什麼 瀏覽:338
linuxoracle命令行登錄 瀏覽:227
android深度休眠 瀏覽:172
php微信開發例子 瀏覽:845
醫得app登錄密碼是什麼 瀏覽:142
spring開發伺服器地址 瀏覽:411
伺服器上如何查看伺服器的埠 瀏覽:678
單片機伺服器編譯 瀏覽:770
單口usb列印機伺服器是什麼 瀏覽:859
戰地五開伺服器要什麼條件 瀏覽:956
在word中壓縮圖片大小 瀏覽:255