㈠ RC4 與 DES 哪個演算法最安全
隨機密鑰加密演算法:RC4
位密碼演算法:DES 三重DES(Triple-DES)仍然是很安全的,但是也只是在別無他法的情況下的一個較好的選擇。顯然高級加密標准(AES)是一個更好的加密演算法,NIST用AES代替Triple-DES作為他們的標准(下面有更詳細的討論)。其他較好的演算法包括另外兩個AES的變種演算法Twofish和Serpent-也稱為CAST-128,它是效率和安全的完美結合。這幾個演算法不僅比DES更安全,而且也比DES的速度更快。為什麼要使用一些又慢又不安全的演算法呢?SHA1是一個哈希函數,而不是一個加密函數。作為一個哈希函數,SHA1還是相當優秀的,但是還需要幾年的發展才能用作加密演算法。如果你正在設計一個新系統,那麼謹記你可能會在若干年後用SHA1代替目前的演算法。我再重復一遍:只是可能。呵呵,希望能幫到你!謝謝望採納哦!
㈡ 加密演算法的常見加密演算法
DES(Data Encryption Standard):對稱演算法,數據加密標准,速度較快,適用於加密大量數據的場合;
3DES(Triple DES):是基於DES的對稱演算法,對一塊數據用三個不同的密鑰進行三次加密,強度更高;
RC2和RC4:對稱演算法,用變長密鑰對大量數據進行加密,比 DES 快;
IDEA(International Data Encryption Algorithm)國際數據加密演算法,使用 128 位密鑰提供非常強的安全性;
RSA:由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的,非對稱演算法; 演算法如下:
首先, 找出三個數, p, q, r,其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數......p, q, r 這三個數便是 private key
接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了.....再來, 計算 n = pq.......m, n 這兩個數便是 public key
DSA(Digital Signature Algorithm):數字簽名演算法,是一種標準的 DSS(數字簽名標准),嚴格來說不算加密演算法;
AES(Advanced Encryption Standard):高級加密標准,對稱演算法,是下一代的加密演算法標准,速度快,安全級別高,在21世紀AES 標準的一個實現是 Rijndael 演算法;
BLOWFISH,它使用變長的密鑰,長度可達448位,運行速度很快;
MD5:嚴格來說不算加密演算法,只能說是摘要演算法;
對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
在MD5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(Bits Length)將被擴展至N*512+448,即N*64+56個位元組(Bytes),N為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,如今信息位元組長度=N*512+448+64=(N+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。(可參見MD5演算法詞條)
PKCS:The Public-Key Cryptography Standards (PKCS)是由美國RSA數據安全公司及其合作夥伴制定的一組公鑰密碼學標准,其中包括證書申請、證書更新、證書作廢表發布、擴展證書內容以及數字簽名、數字信封的格式等方面的一系列相關協議。
SSF33,SSF28,SCB2(SM1):國家密碼局的隱蔽不公開的商用演算法,在國內民用和商用的,除這些都不容許使用外,其他的都可以使用;
㈢ RC4演算法和A5/1演算法區別
RC4演算法和A5/1演算法是兩種完全不同的加密算亮讓螞法。
RC4演算法是一種對稱加密演算法,它採用了流密碼(Stream Cipher)的方式。RC4演算法使用一個密鑰來生成一個偽隨機流,然後將明文通過異或運算與該流進行加密,從而得到密文。RC4演算法應用敬埋廣泛,在SSL、TLS等協議中都有應用。但是由於其密鑰長度較短,易受到攻擊,因此在實際應用中需要注意密鑰的安全性。
A5/1演算法是一種分組加密演算法,它被用於GSM手機網路中的加密通信。A5/1演算法採用了移位寄存器的方式,將明文分塊加密。A5/1演算法每個時刻都會輸出一個位,這個位是由三個移位寄存器進行異或運算得到的。雖然A5/1演算法曾經被認為很安全,但現在已經被發現存在漏洞,可以被攻擊者破解。
總之,RC4演算法和A5/1演算法雖然都屬於加密算滑啟法,但是它們的原理和應用場景都不同。
㈣ 對稱加密演算法的加密演算法
基於「對稱密鑰」的加密演算法主要有DES、TripleDES、RC2、RC4、RC5和Blowfish等。
對稱密鑰:DES TripleDES演算法
DES演算法把64位的明文輸入塊變為數據長度為64位的密文輸出塊,其中8位為奇偶校驗位,另外56位作為密碼的長度。首先,DES把輸入的64位數據塊按位重新組合,並把輸出分為L0、R0兩部分,每部分各長32位,並進行前後置換,最終由L0輸出左32位,R0輸出右32位,根據這個法則經過16次迭代運算後,得到L16、R16,將此作為輸入,進行與初始置換相反的逆置換,即得到密文輸出。
DES演算法具有極高的安全性,到目前為止,除了用窮舉搜索法對DES演算法進行攻擊外,還沒有發現更有效的辦法,而56位長密鑰的窮舉空間為2^56,這意味著如果一台計算機的速度是每秒種檢測100萬個密鑰,那麼它搜索完全部密鑰就需要將近2285年的時間,因此DES演算法是一種很可靠的加密方法。
對稱密鑰:RC演算法
RC4演算法的原理是「攪亂」,它包括初始化演算法和偽隨機子密碼生成演算法兩大部分,在初始化的過程中,密鑰的主要功能是將一個256位元組的初始數簇進行隨機攪亂,不同的數簇在經過偽隨機子密碼生成演算法的處理後可以得到不同的子密鑰序列,將得到的子密鑰序列和明文進行異或運算(XOR)後,得到密文。
由於RC4演算法加密採用的是異或方式,所以,一旦子密鑰序列出現了重復,密文就有可能被破解,但是目前還沒有發現密鑰長度達到128位的RC4有重復的可能性,所以,RC4也是目前最安全的加密演算法之一。
對稱密鑰:BlowFish演算法
BlowFish演算法是一個64位分組及可變密鑰長度的分組密碼演算法,該演算法是非專利的。
BlowFish演算法使用兩個「盒」:pbox[18]和sbox[4256],BlowFish演算法有一個核心加密函數。該函數輸入64位信息,運算後以64位密文的形式輸出。用BlowFish演算法加密信息,需要密鑰預處理和信息加密兩個過程。BlowFish演算法的原密鑰pbox和sbox是固定的,要加密一個信息,需要選擇一個key,用這個key對pbox和sbox進行變換,得到下一步信息加密所用到的key_pbox和key_sbox。
BlowFish演算法解密,同樣也需要密鑰預處理和信息解密兩個過程。密鑰預處理的過程和加密時完全相同。信息解密的過程就是把信息加密過程的key_pbox逆序使用即可。
㈤ RC4的漏洞
由於RC4演算法加密是採用的xor,所以,一旦子密鑰序列出現了重復,密文就有可能被破解。關於如何破解xor加密,請參看Bruce Schneier的Applied Cryptography一書的1.4節Simple XOR,在此我就不細說了。那麼,RC4演算法生成的子密鑰序列是否會出現重復呢?由於存在部分弱密鑰,使得子密鑰序列在不到100萬位元組內就發生了完全的重復,如果是部分重復,則可能在不到10萬位元組內就能發生重復,因此,推薦在使用RC4演算法時,必須對加密密鑰進行測試,判斷其是否為弱密鑰。其不足主要體現於,在無線網路中IV(初始化向量)不變性漏洞。
而且,根據目前的分析結果,沒有任何的分析對於密鑰長度達到128位的RC4有效,所以,RC4是目前最安全的加密演算法之一,大家可以放心使用!
分布式代碼管理網站Github從2015年1月5日將停止對RC4的支持,RC4作為一種老舊的驗證和加密演算法易於受到黑客攻擊。這意味著,用戶在使用Windows XP系統上的IE瀏覽器時將無法進入github.com網站
㈥ 求大神用java實現RC4的加密,解密功能,高分懸賞.
importjavax.crypto.Cipher;
importjavax.crypto.spec.SecretKeySpec;
importjavax.xml.bind.DatatypeConverter;
publicclassTest{
publicstaticvoidmain(String[]args)throwsException{
Ciphercipher=Cipher.getInstance("RC4");
Stringpwd="123456";
Stringptext="HelloWorld你好";
SecretKeySpeckey=newSecretKeySpec(pwd.getBytes("UTF-8"),"RC4");
cipher.init(Cipher.ENCRYPT_MODE,key);
byte[]cdata=cipher.update(ptext.getBytes("UTF-8"));
//解密
cipher.init(Cipher.DECRYPT_MODE,key);
byte[]ddata=cipher.update(cdata);
System.out.println("密碼:"+pwd);
System.out.println("明文:"+ptext);
System.out.println("密文:"+DatatypeConverter.printHexBinary(cdata));
System.out.println("解密文:"+newString(ddata,"UTF-8"));
}
}
密碼:123456
明文:HelloWorld你好
密文:
解密文:HelloWorld你好
RC4已經不太安全,只能用於一般加密,不能用於金融等緊要場合。
㈦ 求一個實現RC4加密演算法的第三方包,JAVA的
曾經實驗室的帶動,加上最近在上網路安全與管理的專業選修課,對加密演算法有了濃厚的興趣。老師留了一次作業,用自己的學號為密鑰,加密一句話,使用RC4加密演算法。
圖書館查找資料,發現RC4演算法還是比較容易理解的。於是動手實現出來。不多說廢話,還是貼代碼吧。我寫的注釋還算清楚。
先貼一個含main函數的核心演算法類,有測試,可以看看最後輸出了什麼^.^
import java.io.UnsupportedEncodingException;
public class Arithmetic {
public static void swap(int x,int y){
int temp;
temp=x;
x=y;
y=temp;
}
public static void main(String[] args) throws UnsupportedEncodingException {
// 密鑰(我的學號)
byte K[]={0,6,1,6,1,0,0,4};
int S[]=new int[256];//狀態矢量S
int T[]=new int[256];//臨時矢量T
// 初始化狀態矢量S,同時生成臨時矢量T
for(int i=0;i<256;i++){
S[i]= i;
T[i]=K[i%K.length];
}
//用T使S置換
{
int j=0;
for(int i=0;i<256;i++){
j=(j+(int)S[i]+(int)T[i])%256;
swap(S[i],S[j]);
}
}
int i = 0,j=0;
boolean tt=true;
int c=0;
int t;
byte k;//密鑰流的當前位元組
byte C[]="套范續".getBytes();
System.out.println(C[3]);
byte P[]=new byte[C.length];
while(c<6){
i=(i+1)%256;
j=(j+S[i])%256;
swap(S[i],S[j]);
t=((S[i]+S[j])%256);
k=(byte) S[t];
// C[c]=(byte) (k^P[c]);
// System.out.print(C[c]+" ");
P[c]=(byte) (k^C[c]);
System.out.print(P[c]+" ");
c++;
}
System.out.println(new String(P,"GBK"));
// byte rr[]={65};
// System.out.println(new String(rr));
}
}
再來貼一下以界面展示的代碼,比較長。用的就是普通的jsp+servlet。
核心類:
public class RC4 {
// 密鑰(我的學號)
byte K[]={0,6,1,6,1,0,0,4};
void swap(int x,int y){
int temp;
temp=x;
x=y;
y=temp;
}
public String encrypt(String plaintext){
String ciphertext=new String();
int S[]=new int[256];//狀態矢量S
int T[]=new int[256];//臨時矢量T
// 初始化狀態矢量S,同時生成臨時矢量T
for(int i=0;i<256;i++){
S[i]= i;
T[i]=K[i%K.length];
}
//用T使S置換
{
int j=0;
for(int i=0;i<256;i++){
j=(j+(int)S[i]+(int)T[i])%256;
swap(S[i],S[j]);
}
}
int i = 0,j=0;
int c=0;
int t;
byte k;//密鑰流的當前位元組
byte P[]=plaintext.getBytes();
byte C[]=new byte[P.length];
while(c<P.length){
i=(i+1)%256;
j=(j+S[i])%256;
swap(S[i],S[j]);
t=((S[i]+S[j])%256);
k=(byte) S[t];
C[c]=(byte) (k^P[c]);
System.out.print(C[c]+" ");
c++;
}
System.out.println(new String(C));
ciphertext=new String(C);
return ciphertext;
}
}
頁面:
home.jsp
<%@ page language="java" import="java.util.*,core.ChangeCharset" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()+"://"+request.getServerName()+":"+request.getServerPort()+path+"/";
%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">
<html>
<head>
<base href="<%=basePath%>">
<title>My JSP 'home.jsp' starting page</title>
<meta http-equiv="pragma" content="no-cache">
<meta http-equiv="cache-control" content="no-cache">
<meta http-equiv="expires" content="0">
<meta http-equiv="keywords" content="keyword1,keyword2,keyword3">
<meta http-equiv="description" content="This is my page">
<link rel="stylesheet" type="text/css" href="styles.css">
<script type="text/javascript">
function doencrypt(){
document.form1.domethod.value="encrypt";
document.form1.submit();
}
function dodecipher(){
document.form1.domethod.value="decipher";
document.form1.submit();
}
</script>
</head>
<body>
<%@ include file="header.jsp" %>
<div id="show" >
<form name="form1" method="post" action="Manage">
<input type="hidden" name="domethod" />
請輸入一句話:<input type="text" name="plainText" />
<a href="javascript:void(0)" onclick="javascript:doencrypt();return false;">加密</a>
</br>
</br>
<%String cipher=(String)request.getAttribute("cipher");
if(cipher==null){
cipher="";
}
String plain1=(String)request.getAttribute("plain1");
if(plain1==null){
plain1="";
}
%>
所得密文:<input type="text" name="cipherText" value="<%=cipher %>" />
<a href="javascript:void(0)" onclick="javascript:dodecipher();return false;">解密</a>
</br>
</br>
所得明文:<input type="text" name="getPlain" value="<%=plain1 %>" />
</form>
</div>
<%@ include file="footer.jsp" %>
</body>
</html>
header.jsp(這個沒什麼意思,但還是給出來吧,給初學html的朋友一些借鑒)
<%@ page language="java" import="java.util.*" pageEncoding="gb2312"%>
<div id="header" align="center">
<h1>RC4加密演算法測試系統</h1>
<hr>
</div>
footer.jsp
<%@ page language="java" import="java.util.*" pageEncoding="gb2312"%>
<div align="center">
<hr>
<table>
<tr><td>Powered by Tasu</td></tr>
<tr><td>Copyright@Tasusparty Studio 2009-2010 All rights reserved</td></tr>
</table>
</div>
styles.css(給出來省事一些,諸位看起來方便)
body{
margin:0px;
padding:0px;
background: #E6EAE9;
font-family: "Lucida Sans Unicode", "宋體", "新宋體", Arial, Verdana, serif;
color:#4f6b72;
font-size:12px;
line-height:150%;
}
#show{
margin:0px auto;
padding:0px;
width:200px;
height:400px
}
#header{
margin:30px auto;
}
處理的Servlet:
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import core.ChangeCharset;
import core.RC4;
public class Manage extends HttpServlet {
public Manage() {
super();
}
public void destroy() {
super.destroy(); // Just puts "destroy" string in log
// Put your code here
}
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
doPost(request,response);
}
public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
request.setCharacterEncoding("GBK"); //設置輸入編碼格式
response.setContentType("text/html;charset=GBK"); //設置輸出編碼格式
String domethod=request.getParameter("domethod");
if(domethod.equals("encrypt")){
String plain=request.getParameter("plainText");
RC4 rc4=new RC4();
String cipher=rc4.encrypt(plain);
System.out.println(cipher);
request.setAttribute("cipher", cipher);
request.getRequestDispatcher("home.jsp").forward(request, response);
}
if(domethod.equals("decipher")){
String cipher=request.getParameter("cipherText");
RC4 rc4=new RC4();
String plain=rc4.encrypt(cipher);
request.setAttribute("plain1", plain);
request.getRequestDispatcher("home.jsp").forward(request, response);
}
}
public void init() throws ServletException {
// Put your code here
}
}(中網互贏 手機客戶端)
㈧ rc4和rc4md5
IV及初始化向量S,
密文:密文第i位元組=明文第i位元組^密鑰流第i位元組
密鑰流:根據明文和密鑰生成,密鑰流長度和明文長度一樣
狀態向量S或IV:長度256個8位,256個位元組
臨時向量T:長度也是256個8位,256個位元組,如果密鑰的長度是256位元組,就直接把密鑰的值賦給T,否則,輪轉地將密鑰的每個位元組賦給T;
密鑰K:密鑰長度與明文長度、密鑰流的長度沒有必然關系,通常密鑰的長度取為16位元組(128比特)
1.初始化S和T:
S的值升序被置為0-255
T的值是密鑰K的值的循環復制
2.S的初始置換
用T產生S的初始置換,置換偽碼如下
j = 0;
for (i = 0 ; i < 256 ; i++){
j = (j + S[i] + T[i]) mod 256;
swap(S[i] , S[j]);
}
因為對S的操作僅是交換,S仍然包含所有值為0-255的元素。
3.密鑰流的生成
i , j = 0;
while (true){
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
swap(S[i] , S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];
}
k即為密鑰流的一個位元組
WEP加密、RC4演算法
RC4
RSA實驗室研發的對稱加密 流 演算法
實現簡單
速度快
加密: 對明文流和密鑰流進行XOR計算
解密: 對密文流和密鑰流進行XOR計算
RC4演算法key由兩個過程生成
合並IV和PSK,利用Key Scheling Algorithm (KSA)演算法生成起始狀態表
Pseudo-Random Generation Algorithm (PRGA)演算法生成最終密鑰流
rc4演算法中加密用的key就是key本身,一般長度16位元組128位
rc4md5中加密用的key是md5(key+iv)得到結果位16位元組hash值128位
㈨ RC4的介紹
RC4加密演算法是大名鼎鼎的RSA三人組中的頭號人物Ronald Rivest在1987年設計的密鑰長度可變的流加密演算法簇。之所以稱其為簇,是由於其核心部分的S-box長度可為任意,但一般為256位元組。該演算法的速度可以達到DES加密的10倍左右,且具有很高級別的非線性。RC4起初是用於保護商業機密的。但是在1994年9月,它的演算法被發布在互聯網上,也就不再有什麼商業機密了。RC4也被叫做ARC4(Alleged RC4——所謂的RC4),因為RSA從來就沒有正式發布過這個演算法。