¤ 歸並排序演算法
¤ 枚舉法
¤ 數字全排列問題
¤ 優化高精度減法
¤ 高精度階乘
¤ 高精度減法
¤ 高精度乘法
¤ Dijkstra最短路徑(一點到各頂點最短路徑)
¤ 八皇後問題
¤ 快速排序演算法
¤ 地圖四色問題
¤ 穿越迷宮
¤ 常用排序演算法
¤ 二分查找法完整版
¤ 標准快速排序演算法
¤ 一躺快速排序法
¤ 快速排序演算法
¤ 插入排序演算法
¤ 選擇排序演算法
¤ 冒泡排序演算法
¤ 統計演算法
¤ 常用演算法——廣度優先搜索
¤ 常用演算法——深度優先搜索
2. 廣度優先搜索怎麼保證最優解啊(新手不懂,求指導)
盡可能廣的遍歷圖的結點,類似於樹的層序遍歷。遍歷順序不唯一,但確定的遍歷順序,對應確定的生成樹。
3. 程序員開發用到的十大基本演算法
演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。
演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
演算法步驟:
演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。
演算法步驟:
終止條件:n=1時,返回的即是i小元素。
演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
演算法步驟:
上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
演算法步驟:
演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
演算法步驟:
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
演算法步驟:
演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
4. 廣度優先搜索有什麼難點
廣度優先搜索難點在於每一種演算法的不同,樹的遍歷。
擴展知識:
廣度優先搜索演算法又譯作寬度優先搜索,或橫向優先搜索,是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹的寬度遍歷樹的節點。如果所有節點均被訪問,則演算法中止。廣度優先搜索的實現一般採用open-closed表。
廣度優先搜索演算法主要有四個特性:
空間復雜度:由於對空間的大量需求,因此BFS並不適合解非常大的問題,對於類似的問題,應用IDDFS已達節省空間的效果。
時間復雜度:最差情形下,BFS必須查找所有到可能節點的所有路徑。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
最佳解:若所有邊的長度相等,廣度優先搜索演算法是最佳解——亦即它找到的第一個解,距離根節點的邊數目一定最少;但對一般的圖來說,BFS並不一定回傳最佳解。
5. 常見演算法5、廣度優先搜索 Breadth-First Search
1、定義
廣度優先搜索 (Breadth-First Search)是最簡便的圖的搜索演算法之一,又稱 寬度優先搜索 ,這一演算法也是很多重要的圖演算法的原型。廣度優先搜索屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位置,徹底地搜索整張圖,直到找到結果為止。
2、應用
廣度優先搜索被用於解決 最短路徑問題(shortest-path problem) 。
廣度優先搜索讓你能夠找出兩樣東西之間的最短距離,不過最短距離的含義有很多!使用廣度優先搜索可以:
3、圖簡介
既然廣度優先搜索是作用於圖的一種演算法,這里對圖作一個簡單的介紹,先不深入了解。
圖由 節點 和 邊 組成。一個節點可能與多個節點相連,這些節點被稱為鄰居。
廣度優先演算法的核心思想是:從初始節點開始,應用算符生成第一層節點,檢查目標節點是否在這些後繼節點中,若沒有,再用產生式規則將所有第一層的節點逐一擴展,得到第二層節點,並逐一檢查第二層節點中是否包含目標節點。若沒有,再用算符逐一擴展第二層的所有節點……,如此依次擴展,檢查下去,直到發現目標節點為止。即
廣度優先搜索使用隊列(queue)來實現,整個過程也可以看做一個倒立的樹形。
例:假如你需要在你的人際關系網中尋找是否有職業為醫生的人,圖如下:
而使用廣度優先搜索工作原理大概如下 :
1、Python 3 :
2、php :
1、《演算法圖解》 https://www.manning.com/books/grokking-algorithms
2、SplQueue類: https://www.php.net/manual/zh/class.splqueue.php
6. 深度優先和廣度優先 的區別 ,用法。
1、主體區別
深度優先搜索是一種在開發爬蟲早期使用較多的方法。它的目的是要達到被搜索結構的葉結點(即那些不包含任何超鏈的HTML文件)。
寬度優先搜索演算法(又稱廣度優先搜索)是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型。
2、演算法區別
深度優先搜索是每次從棧中彈出一個元素,搜索所有在它下一級的元素,把這些元素壓入棧中。並把這個元素記為它下一級元素的前驅,找到所要找的元素時結束程序。
廣度優先搜索是每次從隊列的頭部取出一個元素,查看這個元素所有的下一級元素,把它們放到隊列的末尾。並把這個元素記為它下一級元素的前驅,找到所要找的元素時結束程序。
3、用法
廣度優先屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位置,徹底地搜索整張圖,直到找到結果為止。
深度優先即在搜索其餘的超鏈結果之前必須先完整地搜索單獨的一條鏈。深度優先搜索沿著HTML文件上的超鏈走到不能再深入為止,然後返回到某一個HTML文件,再繼續選擇該HTML文件中的其他超鏈。
(6)廣度搜索演算法java擴展閱讀:
實際應用
BFS在求解最短路徑或者最短步數上有很多的應用,應用最多的是在走迷宮上,單獨寫代碼有點泛化,取來自九度1335闖迷宮一例說明,並給出C++/Java的具體實現。
在一個n*n的矩陣里走,從原點(0,0)開始走到終點(n-1,n-1),只能上下左右4個方向走,只能在給定的矩陣里走,求最短步數。n*n是01矩陣,0代表該格子沒有障礙,為1表示有障礙物。
int mazeArr[maxn][maxn]; //表示的是01矩陣int stepArr = {{-1,0},{1,0},{0,-1},{0,1}}; //表示上下左右4個方向,int visit[maxn][maxn]; //表示該點是否被訪問過,防止回溯,回溯很耗時。核心代碼。基本上所有的BFS問題都可以使用類似的代碼來解決。