導航:首頁 > 源碼編譯 > vrp問題蟻群演算法

vrp問題蟻群演算法

發布時間:2023-08-25 09:40:59

① 有誰能用簡單明了的話給我解釋一下蟻群演算法100分送上!

蟻群演算法就是模擬螞蟻覓食行為的一種群體只能演算法。
螞蟻在找尋食物的過程中會在覓食的路徑上留下信息素,蟻群根據信息素的堆積濃度可以很快找出食物與蟻穴之間的最短路徑。
你可以看一下M.Dorigo的兩篇經典論文「Ant Colony Optimizaiton」和「Ant Algorithm for discrete optimization」。
之所以推薦這兩文獻的原因是:M.Dorigo是蟻群演算法的創建者,他的文章很具有權威性。

② 急求蟻群演算法解決 VRPTW問題的matlab代碼,最好是ACS或者MMAS的!

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:[email protected]
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符號說明
%% C n個城市的坐標,n×2的矩陣
%% NC_max 最大迭代次數
%% m 螞蟻個數
%% Alpha 表徵信息素重要程度的參數
%% Beta 表徵啟發式因子重要程度的參數
%% Rho 信息素蒸發系數
%% Q 信息素增加強度系數
%% R_best 各代最佳路線
%% L_best 各代最佳路線的長度
%% 運行可能要很久,需要耐心等待
%%=========================================================================

n=length(C); %n 為市個數
for i=1:n %坐標矩陣轉換為距離矩陣
for j=1:n
D(i,j)=sqrt((x(i,1)-x(j,1))^2+(x(i,2)-x(j,2))^2);
end
end
for i=1:n %Eta為啟發因子,這里設為距離的倒數
for j=1:n %原文作者少考慮的當D=0是MATLAB提示出錯
if i~=j
Eta(i,j)=1./D(i,j);
end
end
end
for i=1:n
Eta(i,i)=0;
end
Tau=ones(n,n); %Tau為信息素矩陣
Tabu=zeros(m,n); %存儲並記錄路徑的生成
NC=1; %迭代計數器
R_best=zeros(NC_max,n); %各代最佳路線
L_best=inf.*ones(NC_max,1); %各代最佳路線的長度
L_ave=zeros(NC_max,1); %各代路線的平均長度

while NC<=NC_max %停止條件之一:達到最大迭代次數
%%第二步:將m只螞蟻放到n個城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只螞蟻按概率函數選擇下一座城市,完成各自的周遊
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1)); %已訪問的城市
J=zeros(1,(n-j+1)); %待訪問的城市
P=J; %待訪問城市的選擇概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面計算待選城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原則選取下一個城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end

%%第四步:記錄本次迭代最佳路線
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1;

%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零
Tabu=zeros(m,n);
end

%%第七步:輸出結果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
DrawRoute(C,Shortest_Route) %調用函數繪圖

③ 蟻群演算法與遺傳演算法的區別

都屬於智能優化演算法
但是蟻群演算法具有一定的記憶性,遺傳演算法沒有
蟻群演算法有幾種原則,比如覓食原則,避障原則等,遺傳演算法沒有
蟻群演算法屬於群智能優化演算法,具有並行性,每個粒子都可以主動尋優,遺傳演算法不行
蟻群演算法基於信息素在環境中的指示,遺傳演算法是基於優勝劣汰的生物進化思想
遺傳演算法有選擇,交叉,變異三種運算元,每種運算元又有各自的不同方法,通過對運算元方法的修改和搭配,可以得到不同的改進遺傳演算法
蟻群演算法則多和其他智能演算法相結合,得到改進的蟻群演算法

④ 誰會用MATLAB解決蟻群演算法中的物流配送問題(VRP OR CVRP)

蟻群演算法解TSP問題。

TSP蟻群演算法.rar (10.93k)

⑤ 蟻群優化演算法的目錄

1.1 組合優化與計算復雜性
1.2 來自自然界的幾類優化方法 2.1 基本思想
2.2研究概況 3.1 TSP概述
3.2 經典方法
3.3 遺傳演算法與模擬退火法
3.4蟻群演算法
3.5 元胞蟻群演算法及其收斂性 4.1 瓶頸TSP及其求解
4.2 最小比率TSP及其求解
4.3 時間約束TSP及其求解
4.4 多目標TSP及其求解 5.1 VRP概述
5.2 CVRP及其求解
5.3 多目標VRP及其求解
5.4 VRPTW及其求解
5.5 VRPSTW及其求解
5.6 FVRP及其求解 6.1 度約束最小樹問題及其求解
6.2 Steiner最小樹問題及其求解
6.3 Min-Max度最優樹問題與多目標最小樹問題 7.1 0-1規劃問題及其求解
7.2 背包問題及其求解
7.3 多目標0-1規劃問題及其求解
7.4 一般整數規劃問題及其求解 8.1 基本蟻群演算法
8.2 元胞蟻群演算法
8.3 平面選址問題及其求解
8.4 多目標優化問題及其求解 9.1 二次分配問題及其求解
9.2 圖著色問題及其求解
9.3 多目標最短路及其求解 附錄 中國144城鋒衡市相對坐標數據
後記
《運籌與管銀侍做理科談空學叢書》已出版書目

⑥ 蟻群演算法求解TSP問題的源程序及簡要說明

該程序試圖對具有31個城市的VRP進行求解,已知的最優解為784.1,我用該程序只能優化到810左右,應該是陷入局部最優,但我不知問題出在什麼地方。請用過蟻群演算法的高手指教。
蟻群演算法的matlab源碼,同時請指出為何不能優化到已知的最好解

%
%
% the procere of ant colony algorithm for VRP
%
% % % % % % % % % % %

%initialize the parameters of ant colony algorithms
load data.txt;
d=data(:,2:3);
g=data(:,4);

m=31; % 螞蟻數
alpha=1;
belta=4;% 決定tao和miu重要性的參數
lmda=0;
rou=0.9; %衰減系數
q0=0.95;
% 概率
tao0=1/(31*841.04);%初始信息素
Q=1;% 螞蟻循環一周所釋放的信息素
defined_phrm=15.0; % initial pheromone level value
QV=100; % 車輛容量
vehicle_best=round(sum(g)/QV)+1; %所完成任務所需的最少車數
V=40;

% 計算兩點的距離
for i=1:32;
for j=1:32;
dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2);
end;
end;

%給tao miu賦初值
for i=1:32;
for j=1:32;
if i~=j;
%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);
tao(i,j)=defined_phrm;
miu(i,j)=1/dist(i,j);
end;
end;
end;

for k=1:32;
for k=1:32;
deltao(i,j)=0;
end;
end;

best_cost=10000;
for n_gen=1:50;

print_head(n_gen);

for i=1:m;
%best_solution=[];
print_head2(i);
sumload=0;
cur_pos(i)=1;
rn=randperm(32);
n=1;
nn=1;
part_sol(nn)=1;
%cost(n_gen,i)=0.0;
n_sol=0; % 由螞蟻產生的路徑數量
M_vehicle=500;
t=0; %最佳路徑數組的元素數為0

while sumload<=QV;

for k=1:length(rn);
if sumload+g(rn(k))<=QV;
gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;
A(n)=rn(k);
n=n+1;
end;
end;

fid=fopen('out_customer.txt','a+');
fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));
fprintf(fid,'\n%s','the possible customer set is:')
fprintf(fid,'\t%i\n',A);
fprintf(fid,'------------------------------\n');
fclose(fid);

p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i);
maxp=1e-8;
na=length(A);
for j=1:na;
if p(j)>maxp
maxp=p(j);
index_max=j;
end;
end;

old_pos=cur_pos(i);
if rand(1)<q0
cur_pos(i)=A(index_max);
else
krnd=randperm(na);
cur_pos(i)=A(krnd(1));
bbb=[old_pos cur_pos(i)];
ccc=[1 1];
if bbb==ccc;
cur_pos(i)=A(krnd(2));
end;
end;

tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%對所經弧進行局部更新

sumload=sumload+g(cur_pos(i));

nn=nn+1;
part_sol(nn)=cur_pos(i);
temp_load=sumload;

if cur_pos(i)~=1;
rn=setdiff(rn,cur_pos(i));
n=1;
A=[];
end;

if cur_pos(i)==1; % 如果當前點為車場,將當前路徑中的已訪問用戶去掉後,開始產生新路徑
if setdiff(part_sol,1)~=[];
n_sol=n_sol+1; % 表示產生的路徑數,n_sol=1,2,3,..5,6...,超過5條對其費用加上車輛的派遣費用
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'條路徑是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s','當前的用戶需求量是:');
fprintf(fid,'%i\n',temp_load);
fprintf(fid,'------------------------------\n');
fclose(fid);

% 對所得路徑進行路徑內3-opt優化
final_sol=exchange(part_sol);

for nt=1:length(final_sol); % 將所有產生的路徑傳給一個數組
temp(t+nt)=final_sol(nt);
end;
t=t+length(final_sol)-1;

sumload=0;
final_sol=setdiff(final_sol,1);
rn=setdiff(rn,final_sol);
part_sol=[];
final_sol=[];
nn=1;
part_sol(nn)=cur_pos(i);
A=[];
n=1;

end;
end;

if setdiff(rn,1)==[];% 產生最後一條終點不為1的路徑
n_sol=n_sol+1;
nl=length(part_sol);
part_sol(nl+1)=1;%將路徑的最後1位補1

% 對所得路徑進行路徑內3-opt優化
final_sol=exchange(part_sol);

for nt=1:length(final_sol); % 將所有產生的路徑傳給一個數組
temp(t+nt)=final_sol(nt);
end;

cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %計算由螞蟻i產生的路徑總長度

for ki=1:length(temp)-1;
deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i);
end;

if cost(n_gen,i)<best_cost;
best_cost=cost(n_gen,i);
old_cost=best_cost;
best_gen=n_gen; % 產生最小費用的代數
best_ant=i; %產生最小費用的螞蟻
best_solution=temp;
end;

if i==m; %如果所有螞蟻均完成一次循環,,則用最佳費用所對應的路徑對弧進行整體更新
for ii=1:32;
for jj=1:32;
tao(ii,jj)=(1-rou)*tao(ii,jj);
end;
end;

for kk=1:length(best_solution)-1;
tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution(kk+1))+deltao(best_solution(kk),best_solution(kk+1));
end;
end;

fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'路徑是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s %i\n','當前的用戶需求量是:',temp_load);
fprintf(fid,'%s %f\n','總費用是:',cost(n_gen,i));
fprintf(fid,'------------------------------\n');
fprintf(fid,'%s\n','最終路徑是:');
fprintf(fid,'%i-',temp);
fprintf(fid,'\n');
fclose(fid);
temp=[];
break;
end;
end;

end;
end;
我現在也在研究它,希望能共同進步.建義可以看一下段海濱的關於蟻群演算法的書.講的不錯,李士勇的也可以,還有一本我在圖書館見過,記不得名字了.

⑦ 蟻群演算法的概念,最好能舉例說明一些蟻群演算法適用於哪些問題!

概念:蟻群演算法(ant colony optimization,ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法.它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中鎮搜發現路徑的行為.蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值
其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序
應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內
引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不襪高難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來御好歷的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.

⑧ 關於神經網路,蟻群演算法和遺傳演算法

  1. 神經網路並行性和自適應性很強,應用領域很廣,在任何非線性問題中都可以應用,如控制、信息、預測等各領域都能應用。

  2. 蟻群演算法最開始應用於TSP問題,獲得了成功,後來又廣泛應用於各類組合優化問題。但是該演算法理論基礎較薄弱,演算法收斂性都沒有得到證明,很多參數的設定也僅靠經驗,實際效果也一般,使用中也常常早熟。

  3. 遺傳演算法是比較成熟的演算法,它的全局尋優能力很強,能夠很快地趨近較優解。主要應用於解決組合優化的NP問題。

  4. 這三種演算法可以相互融合,例如GA可以優化神經網路初始權值,防止神經網路訓練陷入局部極小且加快收斂速度。蟻群演算法也可用於訓練神經網路,但一定要使用優化後的蟻群演算法,如最大-最小蟻群演算法和帶精英策略。

閱讀全文

與vrp問題蟻群演算法相關的資料

熱點內容
網路流理論演算法與應用 瀏覽:795
java和matlab 瀏覽:388
釘釘蘋果怎麼下app軟體 瀏覽:832
php網站驗證碼不顯示 瀏覽:859
鋁膜構造柱要設置加密區嗎 瀏覽:344
考駕照怎麼找伺服器 瀏覽:884
阿里雲伺服器如何更換地區 瀏覽:972
手機app調音器怎麼調古箏 瀏覽:503
銳起無盤系統在伺服器上需要設置什麼嗎 瀏覽:19
紅旗計程車app怎麼應聘 瀏覽:978
如何編寫linux程序 瀏覽:870
吉利車解壓 瀏覽:248
java輸入流字元串 瀏覽:341
安卓軟體沒網怎麼回事 瀏覽:785
dvd壓縮碟怎麼導出電腦 瀏覽:274
冒險島什麼伺服器好玩 瀏覽:541
如何在伺服器上做性能測試 瀏覽:793
命令序列錯 瀏覽:259
javaif的條件表達式 瀏覽:576
手機app上傳的照片怎麼找 瀏覽:531