❶ 怎樣才能快速搜索路由表有哪些著名的搜索演算法
有三個路由器,a,b和c。路由器a的兩個網路介面f0和s0
分別連接在
10.1.0.0和10.2.0.0網段上;路由器b的兩個網路介面s0和s1
分別連接在
10.2.0.0和10.3.0.0網段上;路由器c的兩個網路介面s0和e0
分別連接在
10.3.0.0和10.4.0.0網段上;
如上圖中各路由表的前兩行所示,通過路由表的網路介面到與之直接相連的網
絡的網路連接,其向量距離設置為0。這即是最初的路由表。
當路由器b和a以及b和c之間相互交換路由信息後,它們會更新各自的路由表。
例如,路由器b通過網路埠s1收到路由器c的路由信息(10.3.0.0,s0,0)和(10.4.0.0,e0,0)後,在自己的路由表中增加一條(10.4.0.0,s1,1)路由信息。該信息表示:通過路由器b的網路接
口s1可以訪問到10.4.0.0網段,其向量距離為1,該向量距離是在路由器c的基礎上加1獲得的。
同樣道理,路由器b還會產生一條(10.1.0.0,s0,1)路由,這條路由是通過網路埠s0從路由器a
獲得的。如此反復,直到最終收斂,形成圖中所示的路由表。
概括地說,距離向量演算法要求每一個路由器把它的整個路由表發送給與它直接連接的其它路由
器。路由表中的每一條記錄都包括目標邏輯地址、相應的網路介面和該條路由的向量距離。當一個路
由器從它的相鄰處收到更新信息時,它會將更新信息與本身的路由表相比較。如果該路由器比較出一條
新路由或是找到一條比當前路由更好的路由時,它會對路由表進行更新:將從該路由器到鄰居之間的
向量距離與更新信息中的向量距離相加作為新路由的向量距離。
❷ 二分查找法的具體演算法
折半查找法也稱為二分查找法,它充分利用了元素間的次序關系,採用分治策略,可在最壞的情況下用O(log n)完成搜索任務。它的基本思想是,將n個元素分成個數大致相同的兩半,取a[n/2]與欲查找的x作比較,如果x=a[n/2]則找到x,演算法終止。如果x<a[n/2],則我們只要在數組a的左半部繼續搜索x(這里假設數組元素呈升序排列)。如果x>a[n/2],則我們只要在數組a的右半部繼續搜索x。二分搜索法的應用極其廣泛,而且它的思想易於理解,但是要寫一個正確的二分搜索演算法也不是一件簡單的事。第一個二分搜索演算法早在1946年就出現了,但是第一個完全正確的二分搜索演算法直到1962年才出現。Bentley在他的著作《Writing Correct Programs》中寫道,90%的計算機專家不能在2小時內寫出完全正確的二分搜索演算法。問題的關鍵在於准確地制定各次查找范圍的邊界以及終止條件的確定,正確地歸納奇偶數的各種情況,其實整理後可以發現它的具體演算法是很直觀的,我們可用C++描述如下:
template<class Type>
int BinarySearch(Type a[],const Type& x,int n)
{
int left=0;
int right=n-1;
while(left<=right){
int middle=(left+right)/2;
if (x==a[middle]) return middle;
if (x>a[middle]) left=middle+1;
else right=middle-1;
}
return -1;
}
模板函數BinarySearch在a[0]<=a[1]<=...<=a[n-1]共n個升序排列的元素中搜索x,找到x時返回其在數組中的位置,否則返回-1。容易看出,每執行一次while循環,待搜索數組的大小減少一半,因此整個演算法在最壞情況下的時間復雜度為O(log n)。在數據量很大的時候,它的線性查找在時間復雜度上的優劣一目瞭然。
❸ 計算機考研:數據結構常用演算法解析(8)
第九章 查找
查找分成靜態查找和動態查找,靜態查找只是找,返回查找位置。而動態查找則不同,若查找成功,返回位置,若查找不成功,則要返回新記錄的插入位置。也就是說,靜態查找不改變查找表,而動態查找則會有插入操作,會改變查找表的。
不同的查找所採用的存儲結構也不同,靜態查找採用順序表,而動碼遲態查找由於經常變動,所以用二叉排序樹,二叉平衡樹、B-和B+。
靜態查找有,順序查找,折半查找,分塊查找(索引順序查找)
順序查找(Sequential Search)是最簡單的一種查找方法。
演算法思路
設給定值為k,在表(R1 R2……Rn)中,從Rn即最後一個元素開始,查找key=k的記錄。若存在一個記錄Ri(l≤i≤n)的key為k,則查找成功,返回記錄序號i;否則,查找失敗,返回0。
演算法描述
int sqsearch(sqlist r,keytype k) //對表r順序查找的演算法//
{ int i;
r.data[0].key=k; //k存入監視哨//
i=r.len; //取表長//
while(r.data[i].key!=k)
i--; //順序查找//
return(i);
}
演算法用了一點技巧:先將k存入監視哨,若對某個i(≠0)有r.data[i].key=k,則查找成功,返回i;若i從n遞減到1都無記錄的key為k,i再減1為0時,必有r.data[0].key=k,說明查找失敗,返回i=0。
平均查找成功長度ASL= ,而查找失敗時,查找次數等於n+l。
折半查找演算法及分析
當記錄的key按關系≤或≥有序時,不管是遞增的還是遞減的,只要有序且採用順序存儲。
演算法描述
int Binsearch(sqlist r,keytype k) //對有序表r折半查找的演算法//
{ int low,high,mid;
low=1;high=r.len; //上下界初值//
while(low<=high) //表空間存在時//
{ mid=(low+high)/2; //求當前mid//
if (k==r.data[mid].key)
return(mid); //查找成功,返回mid//
if (k
high=mid-1; //調整上界,向左部查找//
else
low=mid+1; //調整下界,向右部查找//
}
return(0); //low>high,查找失敗//
}
判定樹:用來描述二分查找過程的二叉樹。n個結點的判定樹的深度和n個結點的完全二叉樹深度相同= 。但判斷樹不一定是完全二叉樹,但他的葉子結點所在層次之差不超過1。所以,折半查找在查找成功時和給定值進行比笑困較的關鍵字個數至多為
ASL=
分塊查找演算法及分析
分塊查找(Blocking Search),又稱索引順序查找(Indexed Sequential Search),是順序查找方法的一種改進,目的也是為了提高查找效率。
1.分塊
設記錄表長為n,將表的n個記錄分成b= 個塊,每塊s個記錄(最後一塊記錄數可以少於s個),即:
且表分塊有序,即第i(1≤i≤b-1)塊所有記錄的key小於第i+1塊中記錄的key,但塊內記錄可以無序。
2.建立索引
每塊對應一索引項:
KeymaxLink
其中Keymax為該塊內記錄的最大key;link為該塊第一記錄的序號(或指針)。
3.演算法思路 分塊索碰模念引查找分兩步進行:
(1)由索引表確定待查找記錄所在的塊;(可以折半查找也可順序因為索引表有序)
(2)在塊內順序查找。(只能用順序查找,塊內是無序的)
考研有疑問、不知道如何總結考研考點內容、不清楚考研報名當地政策,點擊底部咨詢官網,免費領取復習資料:https://www.87dh.com/xl/
❹ 程序員開發用到的十大基本演算法
演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。
演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
演算法步驟:
演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。
演算法步驟:
終止條件:n=1時,返回的即是i小元素。
演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
演算法步驟:
上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
演算法步驟:
演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
演算法步驟:
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
演算法步驟:
演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。