導航:首頁 > 源碼編譯 > 蟻群演算法matlab工具箱

蟻群演算法matlab工具箱

發布時間:2023-08-27 05:28:53

❶ 自適應蟻群演算法在MATLAB中怎麼實現我在網上看了些代碼,不知道怎麼定義函數的,求演算法的具體步驟


首先確定xyz的范圍,比如說xyz都是從1到10,那麼
[x,y,z]=meshgrid(1:10);
這時x,y,z都是3維矩陣,因此後面無法進行乘法運算是吧。因此函數沒法寫。你是這個地方卡住了是吧???
可以這樣解決:
x=x(:);y=y(:);z=z(:);這樣將xyz變成向量。就可以像平時一樣定義函數了。

❷ 用VB或者MATLAB在一個矩形內生成一個固定點和幾個隨機點,再求出從固定點經過所有隨機點回來後的最短路徑

這個並非一般的最短路徑問題,而是旅行商問題(Traveling Saleman Problem,TSP)。旅行商問題屬於NP完全問題,如果問題規模比較大,至今沒有太有效的演算法。

這里提供一個蟻群演算法的程序,參考:

http://..com/question/175608123.html

根據你的問題做了少量改動,具體代碼如下:

functionTSP
%TSP旅行商問題
%設置初始參數如下:
m=10;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
%生成隨機點,第一個點視為固定點
C=[0.50.5];
C(2:10,:)=rand(9,2);
%調用蟻群演算法求解
[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q);


function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%%ACATSP.m
%%
%%ChengAihua,,ZhengZhou,China
%%Email:[email protected]
%%Allrightsreserved
%%-------------------------------------------------------------------------
%%主要符號說明
%%Cn個城市的坐標,n×2的矩陣
%%NC_max最大迭代次數
%%m螞蟻個數
%%Alpha表徵信息素重要程度的參數
%%Beta表徵啟發式因子重要程度的參數
%%Rho信息素蒸發系數
%%Q信息素增加強度系數
%%R_best各代最佳路線
%%L_best各代最佳路線的長度
%%=========================================================================
%%第一步:變數初始化
n=size(C,1);%n表示問題的規模(城市個數)
D=zeros(n,n);%D表示完全圖的賦權鄰接矩陣
fori=1:n
forj=1:n
ifi~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta為啟發因子,這里設為距離的倒數
Tau=ones(n,n);%Tau為信息素矩陣
Tabu=zeros(m,n);%存儲並記錄路徑的生成
NC=1;%迭代計數器
R_best=zeros(NC_max,n);%各代最佳路線
L_best=inf.*ones(NC_max,1);%各代最佳路線的長度
L_ave=zeros(NC_max,1);%各代路線的平均長度
whileNC<=NC_max%停止條件之一:達到最大迭代次數
%%第二步:將m只螞蟻放到n個城市上
Randpos=[];
fori=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只螞蟻按概率函數選擇下一座城市,完成各自的周遊
forj=2:n
fori=1:m
visited=Tabu(i,1:(j-1));%已訪問的城市
J=zeros(1,(n-j+1));%待訪問的城市
P=J;%待訪問城市的選擇概率分布
Jc=1;
fork=1:n
iflength(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面計算待選城市的概率分布
fork=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原則選取下一個城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
ifNC>=2
Tabu(1,:)=R_best(NC-1,:);
end

%%第四步:記錄本次迭代最佳路線
L=zeros(m,1);
fori=1:m
R=Tabu(i,:);
forj=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1

%%第五步:更新信息素
Delta_Tau=zeros(n,n);
fori=1:m
forj=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:輸出結果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))

%繪圖顯示結果
clf
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
holdon
plot(L_ave)

functionDrawRoute(C,R)
%%=========================================================================
%%DrawRoute.m
%%畫路線圖的子函數
%%-------------------------------------------------------------------------
%%CCoordinate節點坐標,由一個N×2的矩陣存儲
%%RRoute路線
%%=========================================================================
%原來的繪圖語句太繁瑣,改用這一句就可以了
plot(C([RR(1)],1),C([RR(1)],2),'o-')
%標明固定點
holdon
plot(C(1,1),C(1,2),'ro')

由於點是隨機生成的,每次運行的結果都不同,下面是某次運行的結果(紅點為固定點)。

❸ 急求蟻群演算法解決 VRPTW問題的matlab代碼,最好是ACS或者MMAS的!

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:[email protected]
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符號說明
%% C n個城市的坐標,n×2的矩陣
%% NC_max 最大迭代次數
%% m 螞蟻個數
%% Alpha 表徵信息素重要程度的參數
%% Beta 表徵啟發式因子重要程度的參數
%% Rho 信息素蒸發系數
%% Q 信息素增加強度系數
%% R_best 各代最佳路線
%% L_best 各代最佳路線的長度
%% 運行可能要很久,需要耐心等待
%%=========================================================================

n=length(C); %n 為市個數
for i=1:n %坐標矩陣轉換為距離矩陣
for j=1:n
D(i,j)=sqrt((x(i,1)-x(j,1))^2+(x(i,2)-x(j,2))^2);
end
end
for i=1:n %Eta為啟發因子,這里設為距離的倒數
for j=1:n %原文作者少考慮的當D=0是MATLAB提示出錯
if i~=j
Eta(i,j)=1./D(i,j);
end
end
end
for i=1:n
Eta(i,i)=0;
end
Tau=ones(n,n); %Tau為信息素矩陣
Tabu=zeros(m,n); %存儲並記錄路徑的生成
NC=1; %迭代計數器
R_best=zeros(NC_max,n); %各代最佳路線
L_best=inf.*ones(NC_max,1); %各代最佳路線的長度
L_ave=zeros(NC_max,1); %各代路線的平均長度

while NC<=NC_max %停止條件之一:達到最大迭代次數
%%第二步:將m只螞蟻放到n個城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只螞蟻按概率函數選擇下一座城市,完成各自的周遊
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1)); %已訪問的城市
J=zeros(1,(n-j+1)); %待訪問的城市
P=J; %待訪問城市的選擇概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面計算待選城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原則選取下一個城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end

%%第四步:記錄本次迭代最佳路線
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1;

%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零
Tabu=zeros(m,n);
end

%%第七步:輸出結果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
DrawRoute(C,Shortest_Route) %調用函數繪圖

❹ 求助Matlab蟻群演算法求一般函數極值的演算法

function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)
%% ---------------------------------------------------------------
% ACASP.m
% 蟻群演算法動態尋路演算法
% ChengAihua,PLA Information Engineering University,ZhengZhou,China
% Email:[email protected]
% All rights reserved
%% ---------------------------------------------------------------
% 輸入參數列表
% G 地形圖為01矩陣,如果為1表示障礙物
% Tau 初始信息素矩陣(認為前面的覓食活動中有殘留的信息素)
% K 迭代次數(指螞蟻出動多少波)
% M 螞蟻個數(每一波螞蟻有多少個)
% S 起始點(最短路徑的起始點)
% E 終止點(最短路徑的目的點)
% Alpha 表徵信息素重要程度的參數
% Beta 表徵啟發式因子重要程度的參數
% Rho 信息素蒸發系數
% Q 信息素增加強度系數
%
% 輸出參數列表
% ROUTES 每一代的每一隻螞蟻的爬行路線
% PL 每一代的每一隻螞蟻的爬行路線長度
% Tau 輸出動態修正過的信息素

%% --------------------變數初始化----------------------------------
%load
D=G2D(G);
N=size(D,1);%N表示問題的規模(象素個數)
MM=size(G,1);
a=1;%小方格象素的邊長
Ex=a*(mod(E,MM)-0.5);%終止點橫坐標
if Ex==-0.5
Ex=MM-0.5;
end
Ey=a*(MM+0.5-ceil(E/MM));%終止點縱坐標
Eta=zeros(1,N);%啟發式信息,取為至目標點的直線距離的倒數
%下面構造啟發式信息矩陣
for i=1:N
if ix==-0.5
ix=MM-0.5;
end
iy=a*(MM+0.5-ceil(i/MM));
if i~=E
Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
else
Eta(1,i)=100;
end
end
ROUTES=cell(K,M);%用細胞結構存儲每一代的每一隻螞蟻的爬行路線
PL=zeros(K,M);%用矩陣存儲每一代的每一隻螞蟻的爬行路線長度
%% -----------啟動K輪螞蟻覓食活動,每輪派出M只螞蟻--------------------
for k=1:K
disp(k);
for m=1:M
%% 第一步:狀態初始化
W=S;%當前節點初始化為起始點
Path=S;%爬行路線初始化
PLkm=0;%爬行路線長度初始化
TABUkm=ones(1,N);%禁忌表初始化
TABUkm(S)=0;%已經在初始點了,因此要排除
DD=D;%鄰接矩陣初始化
%% 第二步:下一步可以前往的節點
DW=DD(W,:);
DW1=find(DW
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可選節點的個數
%% 覓食停止條件:螞蟻未遇到食物或者陷入死胡同
while W~=E&&Len_LJD>=1
%% 第三步:轉輪賭法選擇下一步怎麼走
PP=zeros(1,Len_LJD);
for i=1:Len_LJD
PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);
end
PP=PP/(sum(PP));%建立概率分布
Pcum=cumsum(PP);
Select=find(Pcum>=rand);
%% 第四步:狀態更新和記錄
Path=[Path,to_visit];%路徑增加
PLkm=PLkm+DD(W,to_visit);%路徑長度增加
W=to_visit;%螞蟻移到下一個節點
for kk=1:N
if TABUkm(kk)==0
DD(W,kk)=inf;
DD(kk,W)=inf;
end
end
TABUkm(W)=0;%已訪問過的節點從禁忌表中刪除
for j=1:length(DW1)
if TABUkm(DW1(j))==0
DW(j)=inf;
end
end
LJD=find(DW
Len_LJD=length(LJD);%可選節點的個數
end
%% 第五步:記下每一代每一隻螞蟻的覓食路線和路線長度
ROUTES{k,m}=Path;
if Path(end)==E
PL(k,m)=PLkm;
else
PL(k,m)=inf;
end
end
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
for m=1:M
if PL(k,m) ROUT=ROUTES{k,m};
TS=length(ROUT)-1;%跳數
PL_km=PL(k,m);
for s=1:TS
x=ROUT(s);
Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
end
end
end
Tau=(1-Rho).

❺ 在MATLAB中用蟻群演算法求解TSP問題,在經典的代碼中有Tabu(1,:)=R_best(NC-1,:)。不明白代碼的目的。

正在做。我是這樣理解的:
if NC >= 2
Tabu(1,:) = R_best(NC-1,:);
%把上一次迭代中最佳路線經歷的城市放到本次Tabu的第一行
%相當是加了一個約束條件,如果本次迭代的情況不好,至少不會按照不好的最優解去更新信息素,讓下次的情況更差
end

閱讀全文

與蟻群演算法matlab工具箱相關的資料

熱點內容
程序員阻止電腦自動彈出定位 瀏覽:166
如何做伺服器服務商 瀏覽:759
su剖切命令 瀏覽:726
devc編譯背景 瀏覽:209
學習單片機的意義 瀏覽:49
音頻演算法AEC 瀏覽:909
加密貨幣容易被盜 瀏覽:82
蘋果平板如何開啟隱私單個app 瀏覽:704
空調壓縮機一開就停止 瀏覽:528
如何下載虎牙app 瀏覽:847
日語年號的演算法 瀏覽:955
dev裡面的編譯日誌咋調出來 瀏覽:298
php函數引用返回 瀏覽:816
文件夾和文件夾的創建 瀏覽:259
香港加密貨幣牌照 瀏覽:838
程序員鼓勵自己的代碼 瀏覽:393
計算機網路原理pdf 瀏覽:752
吃雞國際體驗服為什麼伺服器繁忙 瀏覽:94
php中sleep 瀏覽:491
vr怎麼看視頻演算法 瀏覽:88