導航:首頁 > 源碼編譯 > 大數據分析模型演算法

大數據分析模型演算法

發布時間:2023-08-27 15:27:10

Ⅰ 大數據分析的基本方法有哪些

1.可視化分析


不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。


2. 數據挖掘演算法


可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。


3. 預測性分析能力


數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。


4. 語義引擎


由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。


5. 數據質量和數據管理


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

Ⅱ 電子商務行業大數據分析採用的演算法及模型有哪些

第一、RFM模型

通過了解在網站有過購買行為的客戶,通過分析客戶的購買行為來描述客戶的價值,就是時間、頻率、金額等幾個方面繼續進行客戶區分,通過這個模型進行的數據分析,網站可以區別自己各個級別的會員、鐵牌會員、銅牌會員還是金牌會員就是這樣區分出來的。同時對於一些長時間都沒有購買行為的客戶,可以對他們進行一些針對性的營銷活動,激活這些休眠客戶。使用RFM模型只要根據三個不同的變數進行分組就可以實現會員區分。


第二、RFM模型


這個應該是屬於數據挖掘工具的一種,屬於關聯性分析的一種,就可以看出哪兩種商品是有關聯性的,例如衣服和褲子等搭配穿法,通過Apriori演算法,就可以得出兩個商品之間的關聯系,這可以確定商品的陳列等因素,也可以對客戶的購買經歷進行組套銷售。


第三、Spss分析


主要是針對營銷活動中的精細化分析,讓針對客戶的營銷活動更加有針對性,也可以對資料庫當中的客戶購買過的商品進行分析,例如哪些客戶同時購買過這些商品,特別是針對現在電子商務的細分越來越精細,在精細化營銷上做好分析,對於企業的營銷效果有很大的好處。


第四、網站分析


訪問量、頁面停留等等數據,都是重要的流量指標,進行網站數據分析的時候,流量以及轉化率也是衡量工作情況的方式之一,對通過這個指標來了解其他數據的變化也至關重要。

Ⅲ 大數據的數據分析方法有哪些如何學習

  1. 漏斗分析法

    漏斗分析模型是業務分析中的重要方法,最常見的是應用於營銷分析中,由於營銷過程中的每個關鍵節點都會影響到最終的結果,所以在精細化運營應用廣泛的今天,漏斗分析方法可以幫助我們把握每個轉化節點的效率,從而優化整個業務流程。

  2. 對比分析法

    對比分析法不管是從生活中還是工作中,都會經常用到,對比分析法也稱比較分析法,是將兩個或兩個以上相互聯系的指標數據進行比較,分析其變化情況,了解事物的本質特徵和發展規律。

    在數據分析中,常用到的分3類:時間對比、空間對比以及標准對比。

  3. 用戶分析法

    用戶分析是互聯網運營的核心,常用的分析方法包括:活躍分析,留存分析,用戶分群,用戶畫像等。在剛剛說到的RARRA模型中,用戶活躍和留存是非常重要的環節,通過對用戶行為數據的分析,對產品或網頁設計進行優化,對用戶進行適當引導等。

    通常我們會日常監控「日活」、「月活」等用戶活躍數據,來了解新增的活躍用戶數據,了解產品或網頁是否得到了更多人的關注,但是同時,也需要做留存分析,關注新增的用戶是否真正的留存下來成為固定用戶,留存數據才是真正的用戶增長數據,才能反映一段時間產品的使用情況,關於活躍率、留存率的計算。

  4. 細分分析法

    在數據分析概念被廣泛重視的今天,粗略的數據分析很難真正發現問題,精細化數據分析成為真正有效的方法,所以細分分析法是在本來的數據分析上做的更為深入和精細化。

  5. 指標分析法

在實際工作中,這個方法應用的最為廣泛,也是在使用其他方法進行分析的同時搭配使用突出問題關鍵點的方法,指直接運用統計學中的一些基礎指標來做數據分析,比如平均數、眾數、中位數、最大值、最小值等。在選擇具體使用哪個基礎指標時,需要考慮結果的取向性。

Ⅳ 大數據最常用的演算法有哪些

奧地利符號計算研究所(Research Institute for Symbolic Computation,簡稱RISC)的Christoph Koutschan博士在自己的頁面上發布了一篇文章,提到他做了一個調查,參與者大多數是計算機科學家,他請這些科學家投票選出最重要的演算法,以下是這次調查的結果,按照英文名稱字母順序排序。

大數據等最核心的關鍵技術:32個演算法

1、A* 搜索演算法——圖形搜索演算法,從給定起點到給定終點計算出路徑。其中使用了一種啟發式的估算,為每個節點估算通過該節點的最佳路徑,並以之為各個地點排定次序。演算法以得到的次序訪問這些節點。因此,A*搜索演算法是最佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——最佳優先搜索演算法的優化。使用啟發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的演算法,每個步驟去掉一半不符合要求的數據。

4、分支界定演算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的演算法,特別是針對離散、組合的最優化。

5、Buchberger演算法——一種數學演算法,可將其視為針對單變數最大公約數求解的歐幾里得演算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的位元組數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換演算法——一種加密協議,允許雙方在事先不了解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra演算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短演算法。

9、離散微分演算法(Discrete differentiation)。

10、動態規劃演算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構演算法

11、歐幾里得演算法(Euclidean algorithm)——計算兩個整數的最大公約數。最古老的演算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-最大演算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-最大演算法在概率模型中尋找可能性最大的參數估算值,其中模型依賴於未發現的潛在變數。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變數的現有估計值,計算其最大可能估計值;第二步是最大化,最大化在第一步上求得的最大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該演算法應用范圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化演算法。

15、哈希演算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該演算法發現於1962年。

18、LLL演算法(Lenstra-Lenstra-Lovasz lattice rection)——以格規約(lattice)基數為輸入,輸出短正交向量基數。LLL演算法在以下公共密鑰加密方法中有大量使用:背包加密系統(knapsack)、有特定設置的RSA加密等等。

19、最大流量演算法(Maximum flow)——該演算法試圖從一個流量網路中找到最大的流。它優勢被定義為找到這樣一個流的值。最大流問題可以看作更復雜的網路流問題的特定情況。最大流與網路中的界面有關,這就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網路中的最大流。

20、合並排序(Merge Sort)。

21、牛頓法(Newton』s method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習演算法——這是一種通過學習動作值函數(action-value function)完成的強化學習演算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解演算法,在實踐中,是目前已知第二快的此類演算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認為它比數域篩法更簡單。

24、RANSAC——是「RANdom SAmple Consensus」的縮寫。該演算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密演算法。首個適用於以簽名作為加密的演算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Sch?nhage-Strassen演算法——在數學中,Sch?nhage-Strassen演算法是用來完成大整數的乘法的快速漸近演算法。其演算法復雜度為:O(N log(N) log(log(N))),該演算法使用了傅里葉變換。

27、單純型演算法(Simplex Algorithm)——在數學的優化理論中,單純型演算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變數上的一系列線性不等式組,以及一個等待最大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或復數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的偽逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor演算法——應用於模式識別領域,為所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合並查找演算法(Union-find)——給定一組元素,該演算法常常用來把這些元素分為多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合並查找演算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合並:聯合或合並兩個組為一個組。

32、維特比演算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃演算法,這種序列被稱為維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

以上就是Christoph博士對於最重要的演算法的調查結果。你們熟悉哪些演算法?又有哪些演算法是你們經常使用的?

Ⅳ 大數據分析中,有哪些常見的大數據分析模型

對於互聯網平台而言的產品,主要可以分為兩大類:商品和服務。想要通過數據分析提高產品的銷量,首先要了解哪些數據需要分析?

哪些數據需要分析?

一、運營模塊

從用戶的消費流程來看,可以劃分為四個部分:引流,轉化,消費,存留。

流量主要體現在引流環節,按照流量結構可以分為渠道結構,業務結構以及地區結構等。渠道結構,可以追蹤各個渠道的流量情況,通過渠道流量佔比來分析各渠道的質量。業務結構,根據指定業務對活動的流量進行追蹤,觀察活動前,中,後流量的變化情況,對活動效果做出評估。

轉化率=期望行為人數/作用總人數。提升轉化率意味著更低的成本,更高的利潤, 最經典的分析模型就是漏斗模型。

通過各個渠道或者活動把用戶引流過來,但過一段時間就會有用戶流失掉,這部分用戶就是流失用戶,而留下來的這部分用戶就是留存用戶。流失可以分為剛性流失,體驗流失和競爭流失,雖然流失是不可避免的,但可以根據對流失的分析,做出相應的對策來挽留用戶。關於留存,通過觀察存留的規律,定位存留階段,可以輔助市場活動、市場策略定位等,同時還可以對比不同用戶、產品的功能存留情況,分析產品價值,及時對產品做出調整。

復購率可以分為「用戶復購率」和「訂單復購率」,通過分析復購率,可以進一步對用戶粘性進行分析,輔助發現復購率問題,制定運營策略, 同事還可以進行橫向(商品、用戶、渠道)對比分析, 細化復購率,輔助問題定位。

二、銷售模塊

銷售模塊中有大量的指標,包括同環比、完成率、銷售排行、重點商品佔比、平台佔比等等。

三、商品模塊

重要指標分析:包括貨齡、動銷率、缺貨率、結構指標、價格體系、關聯分析、暢滯銷分析等, 用來評判商品價值,輔助調整商品策略

四、用戶模塊

重點指標分析:包括新增用戶數、增長率、流失率、有效會員佔比、存留情況等

用戶價值分析:可以根據RFM模型,再融入其他個性化參數,對用戶進行價值的劃分,並針對各等級用戶做出進一步分析。

用戶畫像:根據固有屬性、行為屬性、交易屬性、興趣愛好等維度,來為用戶添加標簽與權重,設計用戶畫像,提供精準營銷參考依據。


根據需要分析的數據選擇分析模型

一、用戶模型

用戶模型是一種在營銷規劃或商業設計上描繪目標用戶的方法,經常有多種組合,方便規劃者用來分析並設置其針對不同用戶所展開的策略。傳統的用戶模型構建方法有兩種:基於訪談和觀察構建用戶模型(嚴謹可靠但費時)、臨時用戶模型(基於行業專家或者市場調查數據構建,快速但不夠可靠)。

改進的用戶模型構建方法:基於用戶行為數據的用戶模型

優勢:對傳統方式進行簡化,降低數據分析的門檻;讓數據分析更科學、高效、全面,可以更直接地應用於業務增長,指導運營策略。

方法:

1. 整理、收集對用戶的初始認知

2. 對用戶進行分群

3. 分析用戶的行為數據

4. 推測目標動機

5. 對用戶進行訪談調查驗證

6. 用戶模型建立修正

同時,還可以將收集到的用戶信息映射成為用戶的屬性或用戶的行為信息,並存儲起來形成用戶檔案;實時關注自身數據的波動,及時做出戰略性調整。

二、事件模型

事件模型是用戶行為數據分析的第一步,也是分析的核心和基礎,它背後的數據結構、採集時機以及對事件的管理是事件模型中的三大要素。

什麼是事件?

事件就是用戶在產品上的行為,它是用戶行為的一個專業描述,用戶在產品上所有獲得的程序反饋都可以抽象為事件,由開發人員通過埋點進行採集。舉個例子:用戶在頁面上點擊按鈕就是一個事件。

事件的採集

事件-屬性-值的結構:事件(用戶在產品上的行為),屬性(描述事件的維度),值(屬性的內容)

在事件採集過程中,靈活運用事件-屬性-值的結構,不僅可以最大化還原用戶使用場景,還可以極大地節省事件量,提高工作效率。

採集的時機:用戶點擊、網頁載入完成、伺服器判斷返回。在設計埋點需求文檔時,採集時機的說明尤為重要,也是保證數據准確性的核心。

舉個例子:電商銷售網頁的事件採集

上圖中,每一環代表用戶的一步,不同的顏色代表不同的行為,同一環顏色佔比越大代表在當前步驟中用戶行為越統一,環越長說明用戶的行為路徑越長。

八、用戶分群模型

用戶分群即用戶信息標簽化,通過用戶的歷史行為路徑、行為特徵、偏好等屬性,將具有相同屬性的用戶劃分為一個群體,並進行後續分析。

基於用戶行為數據的分群模型:當回歸到行為數據本身,會發現對用戶的洞察可以更精細更溯源,用歷史行為記錄的方式可以更快地找到想要的人群。

四個用戶分群的維度:

如何提高產品銷量是一個綜合性的問題,需要結合多種模型進行數據分析,以上內容是對一些知識的歸納,希望能夠對您有所幫助。

Ⅵ 大數據分析領域有哪些分析模型

數據角度的模型一般指的是統計或數據挖掘、機器學習、人工智慧等類型的模型,是純粹從科學角度出發定義的。
1. 降維
在面對海量數據或大數據進行數據挖掘時,通常會面臨「維度災難」,原因是數據集的維度可以不斷增加直至無窮多,但計算機的處理能力和速度卻是有限的;另外,數據集的大量維度之間可能存在共線性的關系,這會直接導致學習模型的健壯性不夠,甚至很多時候演算法結果會失效。因此,我們需要降低維度數量並降低維度間共線性影響。
數據降維也被成為數據歸約或數據約減,其目的是減少參與數據計算和建模維度的數量。數據降維的思路有兩類:一類是基於特徵選擇的降維,一類是是基於維度轉換的降維。
2. 回歸
回歸是研究自變數x對因變數y影響的一種數據分析方法。最簡單的回歸模型是一元線性回歸(只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示),可以表示為Y=β0+β1x+ε,其中Y為因變數,x為自變數,β1為影響系數,β0為截距,ε為隨機誤差。
回歸分析按照自變數的個數分為一元回歸模型和多元回歸模型;按照影響是否線性分為線性回歸和非線性回歸。
3. 聚類
聚類是數據挖掘和計算中的基本任務,聚類是將大量數據集中具有「相似」特徵的數據點劃分為統一類別,並最終生成多個類的方法。聚類分析的基本思想是「物以類聚、人以群分」,因此大量的數據集中必然存在相似的數據點,基於這個假設就可以將數據區分出來,並發現每個數據集(分類)的特徵。
4. 分類
分類演算法通過對已知類別訓練集的計算和分析,從中發現類別規則,以此預測新數據的類別的一類演算法。分類演算法是解決分類問題的方法,是數據挖掘、機器學習和模式識別中一個重要的研究領域。
5. 關聯
關聯規則學習通過尋找最能夠解釋數據變數之間關系的規則,來找出大量多元數據集中有用的關聯規則,它是從大量數據中發現多種數據之間關系的一種方法,另外,它還可以基於時間序列對多種數據間的關系進行挖掘。關聯分析的典型案例是「啤酒和尿布」的捆綁銷售,即買了尿布的用戶還會一起買啤酒。
6. 時間序列
時間序列是用來研究數據隨時間變化趨勢而變化的一類演算法,它是一種常用的回歸預測方法。它的原理是事物的連續性,所謂連續性是指客觀事物的發展具有合乎規律的連續性,事物發展是按照它本身固有的規律進行的。在一定條件下,只要規律賴以發生作用的條件不產生質的變化,則事物的基本發展趨勢在未來就還會延續下去。
7. 異常檢測
大多數數據挖掘或數據工作中,異常值都會在數據的預處理過程中被認為是「噪音」而剔除,以避免其對總體數據評估和分析挖掘的影響。但某些情況下,如果數據工作的目標就是圍繞異常值,那麼這些異常值會成為數據工作的焦點。
數據集中的異常數據通常被成為異常點、離群點或孤立點等,典型特徵是這些數據的特徵或規則與大多數數據不一致,呈現出「異常」的特點,而檢測這些數據的方法被稱為異常檢測。
8. 協同過濾
協同過濾(Collaborative Filtering,CF))是利用集體智慧的一個典型方法,常被用於分辨特定對象(通常是人)可能感興趣的項目(項目可能是商品、資訊、書籍、音樂、帖子等),這些感興趣的內容來源於其他類似人群的興趣和愛好,然後被作為推薦內容推薦給特定對象。
9. 主題模型
主題模型(Topic Model),是提煉出文字中隱含主題的一種建模方法。在統計學中,主題就是詞彙表或特定詞語的詞語概率分布模型。所謂主題,是文字(文章、話語、句子)所表達的中心思想或核心概念。
10. 路徑、漏斗、歸因模型
路徑分析、漏斗分析、歸因分析和熱力圖分析原本是網站數據分析的常用分析方法,但隨著認知計算、機器學習、深度學習等方法的應用,原本很難衡量的線下用戶行為正在被識別、分析、關聯、打通,使得這些方法也可以應用到線下客戶行為和轉化分析。

Ⅶ 需要掌握哪些大數據演算法

數據挖掘領域的十大經典演算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。

1、C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法。
2、2、k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。
3、支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。
4、Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。
5、最大期望(EM)演算法。在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。
6、PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
7、Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。
8、K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。
9、Naive Bayes。在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。
10、CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。

關於大數據演算法的相關問題推薦CDA數據分析師的相關課程,課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生具備從數據治理根源出發的思維,通過數字化工作方法來探查業務問題,通過近因分析、宏觀根因分析等手段,再選擇業務流程優化工具還是演算法工具,而非「遇到問題調演算法包」點擊預約免費試聽課。

閱讀全文

與大數據分析模型演算法相關的資料

熱點內容
程序員阻止電腦自動彈出定位 瀏覽:166
如何做伺服器服務商 瀏覽:759
su剖切命令 瀏覽:726
devc編譯背景 瀏覽:209
學習單片機的意義 瀏覽:49
音頻演算法AEC 瀏覽:909
加密貨幣容易被盜 瀏覽:82
蘋果平板如何開啟隱私單個app 瀏覽:704
空調壓縮機一開就停止 瀏覽:528
如何下載虎牙app 瀏覽:847
日語年號的演算法 瀏覽:955
dev裡面的編譯日誌咋調出來 瀏覽:298
php函數引用返回 瀏覽:816
文件夾和文件夾的創建 瀏覽:259
香港加密貨幣牌照 瀏覽:838
程序員鼓勵自己的代碼 瀏覽:393
計算機網路原理pdf 瀏覽:752
吃雞國際體驗服為什麼伺服器繁忙 瀏覽:94
php中sleep 瀏覽:490
vr怎麼看視頻演算法 瀏覽:88