① 什麼是對稱密碼和非對密碼,分析這兩種密碼體系的特點和應用領域
一、對稱密碼
1、定義:採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密,也稱為單密鑰加密。
2、特點:演算法公開、計算量小、加密速度快、加密效率高。
3、應用領域:由於其速度快,對稱性加密通常在消息發送方需要加密大量數據時使用。
二、非對密碼
1、定義:非對稱密碼指的是非對稱密碼體制中使用的密碼。
2、特點:
(1)是加密密鑰和解密密鑰不同 ,並且難以互推 。
(2)是有一個密鑰是公開的 ,即公鑰 ,而另一個密鑰是保密的 ,即私鑰。
3、應用領域:很好的解決了密鑰的分發和管理的問題 ,並且它還能夠實現數字簽名。
(1)非對稱加密演算法的加密計算量小嗎擴展閱讀
對稱加密演算法特徵
1、加密方和解密方使用同一個密鑰;
2、加密解密的速度比較快,適合數據比較長時的使用;
3、密鑰傳輸的過程不安全,且容易被破解,密鑰管理也比較麻煩
② 對稱加密演算法與非對稱加密演算法的特點及用途
對稱加密演算法
對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。
對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有des、idea和aes。
不對稱加密演算法
不對稱加密演算法使用兩把完全不同但又是完全匹配的一對鑰匙—公鑰和私鑰。在使用不對稱加密演算法加密文件時,只有使用匹配的一對公鑰和私鑰,才能完成對明文的加密和解密過程。加密明文時採用公鑰加密,解密密文時使用私鑰才能完成,而且發信方(加密者)知道收信方的公鑰,只有收信方(解密者)才是唯一知道自己私鑰的人。不對稱加密演算法的基本原理是,如果發信方想發送只有收信方才能解讀的加密信息,發信方必須首先知道收信方的公鑰,然後利用收信方的公鑰來加密原文;收信方收到加密密文後,使用自己的私鑰才能解密密文。顯然,採用不對稱加密演算法,收發信雙方在通信之前,收信方必須將自己早已隨機生成的公鑰送給發信方,而自己保留私鑰。由於不對稱演算法擁有兩個密鑰,因而特別適用於分布式系統中的數據加密。廣泛應用的不對稱加密演算法有rsa演算法和美國國家標准局提出的dsa。以不對稱加密演算法為基礎的加密技術應用非常廣泛。
③ 非對稱加密演算法 (RSA、DSA、ECC、DH)
非對稱加密需要兩個密鑰:公鑰(publickey) 和私鑰 (privatekey)。公鑰和私鑰是一對,如果用公鑰對數據加密,那麼只能用對應的私鑰解密。如果用私鑰對數據加密,只能用對應的公鑰進行解密。因為加密和解密用的是不同的密鑰,所以稱為非對稱加密。
非對稱加密演算法的保密性好,它消除了最終用戶交換密鑰的需要。但是加解密速度要遠遠慢於對稱加密,在某些極端情況下,甚至能比對稱加密慢上1000倍。
演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快。對稱密碼體制中只有一種密鑰,並且是非公開的,如果要解密就得讓對方知道密鑰。所以保證其安全性就是保證密鑰的安全,而非對稱密鑰體制有兩種密鑰,其中一個是公開的,這樣就可以不需要像對稱密碼那樣傳輸對方的密鑰了。這樣安全性就大了很多。
RSA、Elgamal、背包演算法、Rabin、D-H、ECC (橢圓曲線加密演算法)。使用最廣泛的是 RSA 演算法,Elgamal 是另一種常用的非對稱加密演算法。
收信者是唯一能夠解開加密信息的人,因此收信者手裡的必須是私鑰。發信者手裡的是公鑰,其它人知道公鑰沒有關系,因為其它人發來的信息對收信者沒有意義。
客戶端需要將認證標識傳送給伺服器,此認證標識 (可能是一個隨機數) 其它客戶端可以知道,因此需要用私鑰加密,客戶端保存的是私鑰。伺服器端保存的是公鑰,其它伺服器知道公鑰沒有關系,因為客戶端不需要登錄其它伺服器。
數字簽名是為了表明信息沒有受到偽造,確實是信息擁有者發出來的,附在信息原文的後面。就像手寫的簽名一樣,具有不可抵賴性和簡潔性。
簡潔性:對信息原文做哈希運算,得到消息摘要,信息越短加密的耗時越少。
不可抵賴性:信息擁有者要保證簽名的唯一性,必須是唯一能夠加密消息摘要的人,因此必須用私鑰加密 (就像字跡他人無法學會一樣),得到簽名。如果用公鑰,那每個人都可以偽造簽名了。
問題起源:對1和3,發信者怎麼知道從網上獲取的公鑰就是真的?沒有遭受中間人攻擊?
這樣就需要第三方機構來保證公鑰的合法性,這個第三方機構就是 CA (Certificate Authority),證書中心。
CA 用自己的私鑰對信息原文所有者發布的公鑰和相關信息進行加密,得出的內容就是數字證書。
信息原文的所有者以後發布信息時,除了帶上自己的簽名,還帶上數字證書,就可以保證信息不被篡改了。信息的接收者先用 CA給的公鑰解出信息所有者的公鑰,這樣可以保證信息所有者的公鑰是真正的公鑰,然後就能通過該公鑰證明數字簽名是否真實了。
RSA 是目前最有影響力的公鑰加密演算法,該演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰,即公鑰,而兩個大素數組合成私鑰。公鑰是可發布的供任何人使用,私鑰則為自己所有,供解密之用。
A 要把信息發給 B 為例,確定角色:A 為加密者,B 為解密者。首先由 B 隨機確定一個 KEY,稱之為私鑰,將這個 KEY 始終保存在機器 B 中而不發出來;然後,由這個 KEY 計算出另一個 KEY,稱之為公鑰。這個公鑰的特性是幾乎不可能通過它自身計算出生成它的私鑰。接下來通過網路把這個公鑰傳給 A,A 收到公鑰後,利用公鑰對信息加密,並把密文通過網路發送到 B,最後 B 利用已知的私鑰,就能對密文進行解碼了。以上就是 RSA 演算法的工作流程。
由於進行的都是大數計算,使得 RSA 最快的情況也比 DES 慢上好幾倍,無論是軟體還是硬體實現。速度一直是 RSA 的缺陷。一般來說只用於少量數據加密。RSA 的速度是對應同樣安全級別的對稱密碼演算法的1/1000左右。
比起 DES 和其它對稱演算法來說,RSA 要慢得多。實際上一般使用一種對稱演算法來加密信息,然後用 RSA 來加密比較短的公鑰,然後將用 RSA 加密的公鑰和用對稱演算法加密的消息發送給接收方。
這樣一來對隨機數的要求就更高了,尤其對產生對稱密碼的要求非常高,否則的話可以越過 RSA 來直接攻擊對稱密碼。
和其它加密過程一樣,對 RSA 來說分配公鑰的過程是非常重要的。分配公鑰的過程必須能夠抵擋中間人攻擊。假設 A 交給 B 一個公鑰,並使 B 相信這是A 的公鑰,並且 C 可以截下 A 和 B 之間的信息傳遞,那麼 C 可以將自己的公鑰傳給 B,B 以為這是 A 的公鑰。C 可以將所有 B 傳遞給 A 的消息截下來,將這個消息用自己的密鑰解密,讀這個消息,然後將這個消息再用 A 的公鑰加密後傳給 A。理論上 A 和 B 都不會發現 C 在偷聽它們的消息,今天人們一般用數字認證來防止這樣的攻擊。
(1) 針對 RSA 最流行的攻擊一般是基於大數因數分解。1999年,RSA-155 (512 bits) 被成功分解,花了五個月時間(約8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央內存的 Cray C916計算機上完成。
RSA-158 表示如下:
2009年12月12日,編號為 RSA-768 (768 bits, 232 digits) 數也被成功分解。這一事件威脅了現通行的1024-bit 密鑰的安全性,普遍認為用戶應盡快升級到2048-bit 或以上。
RSA-768表示如下:
(2) 秀爾演算法
量子計算里的秀爾演算法能使窮舉的效率大大的提高。由於 RSA 演算法是基於大數分解 (無法抵抗窮舉攻擊),因此在未來量子計算能對 RSA 演算法構成較大的威脅。一個擁有 N 量子位的量子計算機,每次可進行2^N 次運算,理論上講,密鑰為1024位長的 RSA 演算法,用一台512量子比特位的量子計算機在1秒內即可破解。
DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 簽名演算法的變種,被美國 NIST 作為 DSS (DigitalSignature Standard)。 DSA 是基於整數有限域離散對數難題的。
簡單的說,這是一種更高級的驗證方式,用作數字簽名。不單單只有公鑰、私鑰,還有數字簽名。私鑰加密生成數字簽名,公鑰驗證數據及簽名,如果數據和簽名不匹配則認為驗證失敗。數字簽名的作用就是校驗數據在傳輸過程中不被修改,數字簽名,是單向加密的升級。
橢圓加密演算法(ECC)是一種公鑰加密演算法,最初由 Koblitz 和 Miller 兩人於1985年提出,其數學基礎是利用橢圓曲線上的有理點構成 Abel 加法群上橢圓離散對數的計算困難性。公鑰密碼體制根據其所依據的難題一般分為三類:大整數分解問題類、離散對數問題類、橢圓曲線類。有時也把橢圓曲線類歸為離散對數類。
ECC 的主要優勢是在某些情況下它比其他的方法使用更小的密鑰 (比如 RSA),提供相當的或更高等級的安全。ECC 的另一個優勢是可以定義群之間的雙線性映射,基於 Weil 對或是 Tate 對;雙線性映射已經在密碼學中發現了大量的應用,例如基於身份的加密。不過一個缺點是加密和解密操作的實現比其他機制花費的時間長。
ECC 被廣泛認為是在給定密鑰長度的情況下,最強大的非對稱演算法,因此在對帶寬要求十分緊的連接中會十分有用。
比特幣錢包公鑰的生成使用了橢圓曲線演算法,通過橢圓曲線乘法可以從私鑰計算得到公鑰, 這是不可逆轉的過程。
https://github.com/esxgx/easy-ecc
Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 演算法。
https://www.jianshu.com/p/58c1750c6f22
DH,全稱為"Diffie-Hellman",它是一種確保共享 KEY 安全穿越不安全網路的方法,也就是常說的密鑰一致協議。由公開密鑰密碼體制的奠基人 Diffie 和 Hellman 所提出的一種思想。簡單的說就是允許兩名用戶在公開媒體上交換信息以生成"一致"的、可以共享的密鑰。也就是由甲方產出一對密鑰 (公鑰、私鑰),乙方依照甲方公鑰產生乙方密鑰對 (公鑰、私鑰)。
以此為基線,作為數據傳輸保密基礎,同時雙方使用同一種對稱加密演算法構建本地密鑰 (SecretKey) 對數據加密。這樣,在互通了本地密鑰 (SecretKey) 演算法後,甲乙雙方公開自己的公鑰,使用對方的公鑰和剛才產生的私鑰加密數據,同時可以使用對方的公鑰和自己的私鑰對數據解密。不單單是甲乙雙方兩方,可以擴展為多方共享數據通訊,這樣就完成了網路交互數據的安全通訊。
具體例子可以移步到這篇文章: 非對稱密碼之DH密鑰交換演算法
參考:
https://blog.csdn.net/u014294681/article/details/86705999
https://www.cnblogs.com/wangzxblog/p/13667634.html
https://www.cnblogs.com/taoxw/p/15837729.html
https://www.cnblogs.com/fangfan/p/4086662.html
https://www.cnblogs.com/utank/p/7877761.html
https://blog.csdn.net/m0_59133441/article/details/122686815
https://www.cnblogs.com/muliu/p/10875633.html
https://www.cnblogs.com/wf-zhang/p/14923279.html
https://www.jianshu.com/p/7a927db713e4
https://blog.csdn.net/ljx1400052550/article/details/79587133
https://blog.csdn.net/yuanjian0814/article/details/109815473
④ 非對稱加密和對稱加密
非對稱加密和對稱加密在加密和解密過程、加密解密速度、傳輸的安全性上都有所不同,具體介紹如下:
1、加密和解密過程不同
對稱加密過程和解密過程使用的同一個密鑰,加密過程相當於用原文+密鑰可以傳輸出密文,同時解密過程用密文-密鑰可以推導出原文。但非對稱加密採用了兩個密鑰,一般使用公鑰進行加密,使用私鑰進行解密。
2、加密解密速度不同
對稱加密解密的速度比較快,適合數據比較長時的使用。非對稱加密和解密花費的時間長、速度相對較慢,只適合對少量數據的使用。
3、傳輸的安全性不同
對稱加密的過程中無法確保密鑰被安全傳遞,密文在傳輸過程中是可能被第三方截獲的,如果密碼本也被第三方截獲,則傳輸的密碼信息將被第三方破獲,安全性相對較低。
非對稱加密演算法中私鑰是基於不同的演算法生成不同的隨機數,私鑰通過一定的加密演算法推導出公鑰,但私鑰到公鑰的推導過程是單向的,也就是說公鑰無法反推導出私鑰。所以安全性較高。
一、對稱加密演算法
指加密和解密使用相同密鑰的加密演算法。對稱加密演算法用來對敏感數據等信息進行加密,常用的演算法包括DES、3DES、AES、DESX、Blowfish、、RC4、RC5、RC6。
DES(Data Encryption Standard) :數據加密標准,速度較快,適用於加密大量數據的場合。
3DES(Triple DES) :是基於DES,對一塊數據用三個不同的密鑰進行三次加密,強度更高。
AES(Advanced Encryption Standard) :高級加密標准,是下一代的加密演算法標准,速度快,安全級別高;
二、非對稱加密演算法
指加密和解密使用不同密鑰的加密演算法,也稱為公私鑰加密。假設兩個用戶要加密交換數據,雙方交換公鑰,使用時一方用對方的公鑰加密,另一方即可用自己的私鑰解密。常見的非對稱加密演算法:RSA、DSA(數字簽名用)、ECC(移動設備用)、Diffie-Hellman、El Gamal。
RSA: 由 RSA 公司發明,是一個支持變長密鑰的公共密鑰演算法,需要加密的文件塊的長度也是可變的;
DSA(Digital Signature Algorithm) :數字簽名演算法,是一種標準的 DSS(數字簽名標准);
ECC(Elliptic Curves Cryptography) :橢圓曲線密碼編碼學。
ECC和RSA相比,在許多方面都有對絕對的優勢,主要體現在以下方面:
(1)抗攻擊性強。相同的密鑰長度,其抗攻擊性要強很多倍。
(2)計算量小,處理速度快。ECC總的速度比RSA、DSA要快得多。
(3)存儲空間佔用小。ECC的密鑰尺寸和系統參數與RSA、DSA相比要小得多,意味著它所佔的存貯空間要小得多。這對於加密演算法在IC卡上的應用具有特別重要的意義。
(4)帶寬要求低。當對長消息進行加解密時,三類密碼系統有相同的帶寬要求,但應用於短消息時ECC帶寬要求卻低得多。帶寬要求低使ECC在無線網路領域具有廣泛的應用前景。
三、散列演算法(Hash演算法---單向加密演算法)
散列是信息的提煉,通常其長度要比信息小得多,且為一個固定長度。加密性強的散列一定是不可逆的,這就意味著通過散列結果,無法推出任何部分的原始信息。任何輸入信息的變化,哪怕僅一位,都將導致散列結果的明顯變化,這稱之為雪崩效應。散列還應該是防沖突的,即找不出具有相同散列結果的兩條信息。具有這些特性的散列結果就可以用於驗證信息是否被修改。
Hash演算法: 特別的地方在於它是一種單向演算法,用戶可以通過Hash演算法對目標信息生成一段特定長度的唯一的Hash值,卻不能通過這個Hash值重新獲得目標信息。因此Hash演算法常用在不可還原的密碼存儲、信息完整性校驗等。
單向散列函數一般用於產生消息摘要,密鑰加密等,常見的Hash演算法:MD2、MD4、MD5、HAVAL、SHA、SHA-1、HMAC、HMAC-MD5、HMAC-SHA1。
MD5(Message Digest Algorithm 5): 是RSA數據安全公司開發的一種單向散列演算法,非可逆,相同的明文產生相同的密文。
SHA(Secure Hash Algorithm): 可以對任意長度的數據運算生成一個160位的數值;
SHA-1與MD5的比較
因為二者均由MD4導出,SHA-1和MD5彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
(1)對強行供給的安全性:最顯著和最重要的區別是SHA-1摘要比MD5摘要長32 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD5是2^(128)數量級的操作,而對SHA-1則是2^(160)數量級的操作。這樣,SHA-1對強行攻擊有更大的強度。
(2)對密碼分析的安全性:由於MD5的設計,易受密碼分析的攻擊,SHA-1顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-1的運行速度比MD5慢。
四、 加密演算法的選擇
1.由於非對稱加密演算法的運行速度比對稱加密演算法的速度慢很多,當我們需要加密大量的數據時,建議採用對稱加密演算法,提高加解密速度。
2.對稱加密演算法不能實現簽名,因此簽名只能非對稱演算法。
3.由於對稱加密演算法的密鑰管理是一個復雜的過程,密鑰的管理直接決定著他的安全性,因此當數據量很小時,我們可以考慮採用非對稱加密演算法。
4.在實際的操作過程中,我們通常採用的方式是:採用非對稱加密演算法管理對稱演算法的密鑰,然後用對稱加密演算法加密數據,這樣我們就集成了兩類加密演算法的優點,既實現了加密速度快的優點,又實現了安全方便管理密鑰的優點。
那採用多少位的密鑰呢?
RSA建議採用1024位的數字,ECC建議採用160位,AES採用128為即可。
⑤ 對稱加密演算法和非對稱加密演算法
常見的對稱加密演算法包括瑞士的國際數據加密演算法(International Data Encryption
Algorithm,IDEA)和美國的數據加密標准(Date Encryption Standard,DES)。
DES是一種迭代的分組密碼,明文和密文都是64位,使用一個56位的密鑰以及附加的8位奇偶校驗位。攻擊DES的主要技術是窮舉法,由於DES的密鑰長度較短,為了提高安全性,就出現了使用112位密鑰對數據進行三次加密的演算法(3DES),即用兩個56位的密鑰K1和K2,發送方用K1加密,K2解密,再使用K1加密;接收方則使用K1解密,K2加密,再使用K1解密,其效果相當於將密鑰長度加倍。
IDEA是在DES的基礎上發展起來的,類似於3DES。IDEA的明文和密文都是64位,密鑰長度為128位。
非對稱加密演算法也稱為公鑰加密演算法,是指加密密鑰和解密密鑰完全不同,其中一個為公鑰,另一個為私鑰,並且不可能從任何一個推導出另一個。它的優點在於可以適應開放性的使用環境,可以實現數字簽名與驗證。
最常見的非對稱加密演算法是RSA,該演算法的名字以發明者的名字命名:Ron Rivest,AdiShamir 和Leonard Adleman。RSA演算法的密鑰長度為512位。RSA演算法的保密性取決於數學上將一個大數分解為兩個素數的問題的難度,根據已有的數學方法,其計算量極大,破解很難。但是加密/解密時要進行大指數模運算,因此加密/解密速度很慢,主要用在數字簽名中。
用公鑰進行加密,用私鑰進行解密
⑥ 常用的非對稱加密演算法有哪些
稱加密技術的優點加密一計算量下,速度快。缺點是,加密方和解密方必須協商好秘鑰,且保證秘鑰安全,如果一方泄露了秘鑰整個通信就會被破解,加密信息就不再安全了。
和對稱加密技術只使用一個秘鑰不同,非對稱機密技術使用兩個秘鑰進行加解密,一個叫做公鑰,一個叫做私鑰,私鑰自己來保管,公鑰可以公開,使用公鑰加密的數據必須使用私鑰解密,反之亦然公鑰和私鑰是兩個不同的秘鑰,因為這種加密方法被稱為非對稱幾秒技術。相比於對稱加密技術,非對稱加密技術安全性更好,但性能更慢。
在互聯網後端技術中非對稱加密技術主要用於登錄、數字簽名、數字證書認證等場景。
常用的非對稱加密演算法有:
RSA:RSA 是一種目前應用非常廣泛、歷史也比較悠久的非對稱秘鑰加密技術,在1977年被麻省理工學院的羅納德·李維斯特(Ron Rivest)、阿迪·薩莫爾(Adi Shamir)和倫納德·阿德曼(Leonard Adleman)三位科學家提出,由於難於破解,RSA 是目前應用最廣泛的數字加密和簽名技術,比如國內的支付寶就是通過RSA演算法來進行簽名驗證。它的安全程度取決於秘鑰的長度,目前主流可選秘鑰長度為 1024位、2048位、4096位等,理論上秘鑰越長越難於破解,按照維基網路上的說法,小於等於256位的秘鑰,在一台個人電腦上花幾個小時就能被破解,512位的秘鑰和768位的秘鑰也分別在1999年和2009年被成功破解,雖然目前還沒有公開資料證實有人能夠成功破解1024位的秘鑰,但顯然距離這個節點也並不遙遠,所以目前業界推薦使用 2048 位或以上的秘鑰,不過目前看 2048 位的秘鑰已經足夠安全了,支付寶的官方文檔上推薦也是2048位,當然更長的秘鑰更安全,但也意味著會產生更大的性能開銷。
DSA:既 Digital Signature Algorithm,數字簽名演算法,他是由美國國家標准與技術研究所(NIST)與1991年提出。和 RSA 不同的是 DSA 僅能用於數字簽名,不能進行數據加密解密,其安全性和RSA相當,但其性能要比RSA快。
ECDSA:Elliptic Curve Digital Signature Algorithm,橢圓曲線簽名演算法,是ECC(Elliptic curve cryptography,橢圓曲線密碼學)和 DSA 的結合,橢圓曲線在密碼學中的使用是在1985年由Neal Koblitz和Victor Miller分別獨立提出的,相比於RSA演算法,ECC 可以使用更小的秘鑰,更高的效率,提供更高的安全保障,據稱256位的ECC秘鑰的安全性等同於3072位的RSA秘鑰,和普通DSA相比,ECDSA在計算秘鑰的過程中,部分因子使用了橢圓曲線演算法。
⑦ 密碼加密的演算法有哪些
主要分為 對稱加密演算法 和 非對稱加密演算法兩類
對稱加密演算法:使用單個密鑰對數據進行加密或解密,其特點是計算量小,加密效率高.
代表 DES 演算法
非對稱加密演算法:此演算法均有兩個密鑰(公用密鑰和私有密鑰),只有二者搭配使用才能完成加密和解密的全過程.
代表 DSA演算法, 數字簽名演算法(DSA) , MD5演算法 , 安全散列演算法(SHA)
⑧ 加密基礎知識二 非對稱加密RSA演算法和對稱加密
上述過程中,出現了公鑰(3233,17)和私鑰(3233,2753),這兩組數字是怎麼找出來的呢?參考 RSA演算法原理(二)
首字母縮寫說明:E是加密(Encryption)D是解密(Decryption)N是數字(Number)。
1.隨機選擇兩個不相等的質數p和q。
alice選擇了61和53。(實際應用中,這兩個質數越大,就越難破解。)
2.計算p和q的乘積n。
n = 61×53 = 3233
n的長度就是密鑰長度。3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。實際應用中,RSA密鑰一般是1024位,重要場合則為2048位。
3.計算n的歐拉函數φ(n)。稱作L
根據公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等於60×52,即3120。
4.隨機選擇一個整數e,也就是公鑰當中用來加密的那個數字
條件是1< e < φ(n),且e與φ(n) 互質。
alice就在1到3120之間,隨機選擇了17。(實際應用中,常常選擇65537。)
5.計算e對於φ(n)的模反元素d。也就是密鑰當中用來解密的那個數字
所謂"模反元素"就是指有一個整數d,可以使得ed被φ(n)除的余數為1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1
6.將n和e封裝成公鑰,n和d封裝成私鑰。
在alice的例子中,n=3233,e=17,d=2753,所以公鑰就是 (3233,17),私鑰就是(3233, 2753)。
上述故事中,blob為了偷偷地傳輸移動位數6,使用了公鑰做加密,即6^17 mode 3233 = 824。alice收到824之後,進行解密,即824^2753 mod 3233 = 6。也就是說,alice成功收到了blob使用的移動位數。
再來復習一下整個流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要滿足以下兩個條件:1<E<144,E和144互質)
D = 29(D要滿足兩個條件,1<D<144,D mode 144 = 1)
假設某個需要傳遞123,則加密後:123^5 mode 323 = 225
接收者收到225後,進行解密,225^ 29 mode 323 = 123
回顧上面的密鑰生成步驟,一共出現六個數字:
p
q
n
L即φ(n)
e
d
這六個數字之中,公鑰用到了兩個(n和e),其餘四個數字都是不公開的。其中最關鍵的是d,因為n和d組成了私鑰,一旦d泄漏,就等於私鑰泄漏。那麼,有無可能在已知n和e的情況下,推導出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有將n因數分解,才能算出p和q。
結論:如果n可以被因數分解,d就可以算出,也就意味著私鑰被破解。
可是,大整數的因數分解,是一件非常困難的事情。目前,除了暴力破解,還沒有發現別的有效方法。維基網路這樣寫道:"對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。假如有人找到一種快速因數分解的演算法,那麼RSA的可靠性就會極度下降。但找到這樣的演算法的可能性是非常小的。今天只有短的RSA密鑰才可能被暴力破解。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要密鑰長度足夠長,用RSA加密的信息實際上是不能被解破的。"
然而,雖然RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何。此外,RSA的缺點還有:
A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。
B)分組長度太大,為保證安全性,n 至少也要 600bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。因此, 使用RSA只能加密少量數據,大量的數據加密還要靠對稱密碼演算法 。
加密和解密是自古就有技術了。經常看到偵探電影的橋段,勇敢又機智的主角,拿著一長串毫無意義的數字苦惱,忽然靈光一閃,翻出一本厚書,將第一個數字對應頁碼數,第二個數字對應行數,第三個數字對應那一行的某個詞。數字變成了一串非常有意義的話:
Eat the beancurd with the peanut. Taste like the ham.
這種加密方法是將原來的某種信息按照某個規律打亂。某種打亂的方式就叫做密鑰(cipher code)。發出信息的人根據密鑰來給信息加密,而接收信息的人利用相同的密鑰,來給信息解密。 就好像一個帶鎖的盒子。發送信息的人將信息放到盒子里,用鑰匙鎖上。而接受信息的人則用相同的鑰匙打開。加密和解密用的是同一個密鑰,這種加密稱為對稱加密(symmetric encryption)。
如果一對一的話,那麼兩人需要交換一個密鑰。一對多的話,比如總部和多個特工的通信,依然可以使用同一套密鑰。 但這種情況下,對手偷到一個密鑰的話,就知道所有交流的信息了。 二戰中盟軍的情報戰成果,很多都來自於破獲這種對稱加密的密鑰。
為了更安全,總部需要給每個特工都設計一個不同的密鑰。如果是FBI這樣龐大的機構,恐怕很難維護這么多的密鑰。在現代社會,每個人的信用卡信息都需要加密。一一設計密鑰的話,銀行怕是要跪了。
對稱加密的薄弱之處在於給了太多人的鑰匙。如果只給特工鎖,而總部保有鑰匙,那就容易了。特工將信息用鎖鎖到盒子里,誰也打不開,除非到總部用唯一的一把鑰匙打開。只是這樣的話,特工每次出門都要帶上許多鎖,太容易被識破身份了。總部老大想了想,乾脆就把造鎖的技術公開了。特工,或者任何其它人,可以就地取材,按照圖紙造鎖,但無法根據圖紙造出鑰匙。鑰匙只有總部的那一把。
上面的關鍵是鎖和鑰匙工藝不同。知道了鎖,並不能知道鑰匙。這樣,銀行可以將「造鎖」的方法公布給所有用戶。 每個用戶可以用鎖來加密自己的信用卡信息。即使被別人竊聽到,也不用擔心:只有銀行才有鑰匙呢!這樣一種加密演算法叫做非對稱加密(asymmetric encryption)。非對稱加密的經典演算法是RSA演算法。它來自於數論與計算機計數的奇妙結合。
1976年,兩位美國計算機學家Whitfield Diffie 和 Martin Hellman,提出了一種嶄新構思,可以在不直接傳遞密鑰的情況下,完成解密。這被稱為"Diffie-Hellman密鑰交換演算法"。這個演算法啟發了其他科學家。人們認識到,加密和解密可以使用不同的規則,只要這兩種規則之間存在某種對應關系即可,這樣就避免了直接傳遞密鑰。這種新的加密模式被稱為"非對稱加密演算法"。
1977年,三位數學家Rivest、Shamir 和 Adleman 設計了一種演算法,可以實現非對稱加密。這種演算法用他們三個人的名字命名,叫做RSA演算法。從那時直到現在,RSA演算法一直是最廣為使用的"非對稱加密演算法"。毫不誇張地說,只要有計算機網路的地方,就有RSA演算法。
1.能「撞」上的保險箱(非對稱/公鑰加密體制,Asymmetric / Public Key Encryption)
數據加密解密和門鎖很像。最開始的時候,人們只想到了那種只能用鑰匙「鎖」數據的鎖。如果在自己的電腦上自己加密數據,當然可以用最開始這種門鎖的形式啦,方便快捷,簡單易用有木有。
但是我們現在是通信時代啊,雙方都想做安全的通信怎麼辦呢?如果也用這種方法,通信就好像互相發送密碼保險箱一樣…而且雙方必須都有鑰匙才能進行加密和解密。也就是說,兩個人都拿著保險箱的鑰匙,你把數據放進去,用鑰匙鎖上發給我。我用同樣的鑰匙把保險箱打開,再把我的數據鎖進保險箱,發送給你。
這樣看起來好像沒什麼問題。但是,這裡面 最大的問題是:我們兩個怎麼弄到同一個保險箱的同一個鑰匙呢? 好像僅有的辦法就是我們兩個一起去買個保險箱,然後一人拿一把鑰匙,以後就用這個保險箱了。可是,現代通信社會,絕大多數情況下別說一起去買保險箱了,連見個面都難,這怎麼辦啊?
於是,人們想到了「撞門」的方法。我這有個可以「撞上」的保險箱,你那裡自己也買一個這樣的保險箱。通信最開始,我把保險箱打開,就這么開著把保險箱發給你。你把數據放進去以後,把保險箱「撞」上發給我。撞上以後,除了我以外,誰都打不開保險箱了。這就是RSA了,公開的保險箱就是公鑰,但是我有私鑰,我才能打開。
2.數字簽名
這種鎖看起來好像很不錯,但是鎖在運輸的過程中有這么一個嚴重的問題:你怎麼確定你收到的開著的保險箱就是我發來的呢?對於一個聰明人,他完全可以這么干:
(a)裝作運輸工人。我現在把我開著的保險箱運給對方。運輸工人自己也弄這么一個保險箱,運輸的時候把保險箱換成他做的。
(b)對方收到保險箱後,沒法知道這個保險箱是我最初發過去的,還是運輸工人替換的。對方把數據放進去,把保險箱撞上。
(c)運輸工人往回運的時候,用自己的鑰匙打開自己的保險箱,把數據拿走。然後復印也好,偽造也好,弄出一份數據,把這份數據放進我的保險箱,撞上,然後發給我。
從我的角度,從對方的角度,都會覺得這數據傳輸過程沒問題。但是,運輸工人成功拿到了數據,整個過程還是不安全的,大概的過程是這樣:
這怎麼辦啊?這個問題的本質原因是,人們沒辦法獲知,保險箱到底是「我」做的,還是運輸工人做的。那乾脆,我們都別做保險箱了,讓權威機構做保險箱,然後在每個保險箱上用特殊的工具刻上一個編號。對方收到保險箱的時候,在權威機構的「公告欄」上查一下編號,要是和保險箱上的編號一樣,我就知道這個保險箱是「我」的,就安心把數據放進去。大概過程是這樣的:
如何做出刻上編號,而且編號沒法修改的保險箱呢?這涉及到了公鑰體制中的另一個問題:數字簽名。
要知道,刻字這種事情吧,誰都能幹,所以想做出只能自己刻字,還沒法讓別人修改的保險箱確實有點難度。那麼怎麼辦呢?這其實困擾了人們很長的時間。直到有一天,人們發現:我們不一定非要在保險箱上刻規規矩矩的字,我們乾脆在保險箱上刻手寫名字好了。而且,刻字有點麻煩,乾脆我們在上面弄張紙,讓人直接在上面寫,簡單不費事。具體做法是,我們在保險箱上嵌進去一張紙,然後每個出產的保險箱都讓權威機構的CEO簽上自己的名字。然後,CEO把自己的簽名公開在權威機構的「公告欄」上面。比如這個CEO就叫「學酥」,那麼整個流程差不多是這個樣子:
這個方法的本質原理是,每個人都能夠通過筆跡看出保險箱上的字是不是學酥CEO簽的。但是呢,這個字體是學酥CEO唯一的字體。別人很難模仿。如果模仿我們就能自己分辨出來了。要是實在分辨不出來呢,我們就請一個筆跡專家來分辨。這不是很好嘛。這個在密碼學上就是數字簽名。
上面這個簽字的方法雖然好,但是還有一個比較蛋疼的問題。因為簽字的樣子是公開的,一個聰明人可以把公開的簽字影印一份,自己造個保險箱,然後把這個影印的字也嵌進去。這樣一來,這個聰明人也可以造一個相同簽字的保險箱了。解決這個問題一個非常簡單的方法就是在看保險箱上的簽名時,不光看字體本身,還要看字體是不是和公開的字體完全一樣。要是完全一樣,就可以考慮這個簽名可能是影印出來的。甚至,還要考察字體是不是和其他保險櫃上的字體一模一樣。因為聰明人為了欺騙大家,可能不影印公開的簽名,而影印其他保險箱上的簽名。這種解決方法雖然簡單,但是驗證簽名的時候麻煩了一些。麻煩的地方在於我不僅需要對比保險箱上的簽名是否與公開的筆跡一樣,還需要對比得到的簽名是否與公開的筆跡完全一樣,乃至是否和所有發布的保險箱上的簽名完全一樣。有沒有什麼更好的方法呢?
當然有,人們想到了一個比較好的方法。那就是,學酥CEO簽字的時候吧,不光把名字簽上,還得帶上簽字得日期,或者帶上這個保險箱的編號。這樣一來,每一個保險箱上的簽字就唯一了,這個簽字是學酥CEO的簽名+學酥CEO寫上的時間或者編號。這樣一來,就算有人偽造,也只能偽造用過的保險箱。這個問題就徹底解決了。這個過程大概是這么個樣子:
3 造價問題(密鑰封裝機制,Key Encapsulation Mechanism)
解決了上面的各種問題,我們要考慮考慮成本了… 這種能「撞」門的保險箱雖然好,但是這種鎖造價一般來說要比普通的鎖要高,而且鎖生產時間也會變長。在密碼學中,對於同樣「結實」的鎖,能「撞」門的鎖的造價一般來說是普通鎖的上千倍。同時,能「撞」門的鎖一般來說只能安裝在小的保險櫃裡面。畢竟,這么復雜的鎖,裝起來很費事啊!而普通鎖安裝在多大的保險櫃上面都可以呢。如果兩個人想傳輸大量數據的話,用一個大的保險櫃比用一堆小的保險櫃慢慢傳要好的多呀。怎麼解決這個問題呢?人們又想出了一個非常棒的方法:我們把兩種鎖結合起來。能「撞」上的保險櫃裡面放一個普通鎖的鑰匙。然後造一個用普通的保險櫃來鎖大量的數據。這樣一來,我們相當於用能「撞」上的保險櫃發一個鑰匙過去。對方收到兩個保險櫃後,先用自己的鑰匙把小保險櫃打開,取出鑰匙。然後在用這個鑰匙開大的保險櫃。這樣做更棒的一個地方在於,既然對方得到了一個鑰匙,後續再通信的時候,我們就不再需要能「撞」上的保險櫃了啊,在以後一定時間內就用普通保險櫃就好了,方便快捷嘛。
以下參考 數字簽名、數字證書、SSL、https是什麼關系?
4.數字簽名(Digital Signature)
數據在瀏覽器和伺服器之間傳輸時,有可能在傳輸過程中被冒充的盜賊把內容替換了,那麼如何保證數據是真實伺服器發送的而不被調包呢,同時如何保證傳輸的數據沒有被人篡改呢,要解決這兩個問題就必須用到數字簽名,數字簽名就如同日常生活的中的簽名一樣,一旦在合同書上落下了你的大名,從法律意義上就確定是你本人簽的字兒,這是任何人都沒法仿造的,因為這是你專有的手跡,任何人是造不出來的。那麼在計算機中的數字簽名怎麼回事呢?數字簽名就是用於驗證傳輸的內容是不是真實伺服器發送的數據,發送的數據有沒有被篡改過,它就干這兩件事,是非對稱加密的一種應用場景。不過他是反過來用私鑰來加密,通過與之配對的公鑰來解密。
第一步:服務端把報文經過Hash處理後生成摘要信息Digest,摘要信息使用私鑰private-key加密之後就生成簽名,伺服器把簽名連同報文一起發送給客戶端。
第二步:客戶端接收到數據後,把簽名提取出來用public-key解密,如果能正常的解密出來Digest2,那麼就能確認是對方發的。
第三步:客戶端把報文Text提取出來做同樣的Hash處理,得到的摘要信息Digest1,再與之前解密出來的Digist2對比,如果兩者相等,就表示內容沒有被篡改,否則內容就是被人改過了。因為只要文本內容哪怕有任何一點點改動都會Hash出一個完全不一樣的摘要信息出來。
5.數字證書(Certificate Authority)
數字證書簡稱CA,它由權威機構給某網站頒發的一種認可憑證,這個憑證是被大家(瀏覽器)所認可的,為什麼需要用數字證書呢,難道有了數字簽名還不夠安全嗎?有這樣一種情況,就是瀏覽器無法確定所有的真實伺服器是不是真的是真實的,舉一個簡單的例子:A廠家給你們家安裝鎖,同時把鑰匙也交給你,只要鑰匙能打開鎖,你就可以確定鑰匙和鎖是配對的,如果有人把鑰匙換了或者把鎖換了,你是打不開門的,你就知道肯定被竊取了,但是如果有人把鎖和鑰匙替換成另一套表面看起來差不多的,但質量差很多的,雖然鑰匙和鎖配套,但是你卻不能確定這是否真的是A廠家給你的,那麼這時候,你可以找質檢部門來檢驗一下,這套鎖是不是真的來自於A廠家,質檢部門是權威機構,他說的話是可以被公眾認可的(呵呵)。
同樣的, 因為如果有人(張三)用自己的公鑰把真實伺服器發送給瀏覽器的公鑰替換了,於是張三用自己的私鑰執行相同的步驟對文本Hash、數字簽名,最後得到的結果都沒什麼問題,但事實上瀏覽器看到的東西卻不是真實伺服器給的,而是被張三從里到外(公鑰到私鑰)換了一通。那麼如何保證你現在使用的公鑰就是真實伺服器發給你的呢?我們就用數字證書來解決這個問題。數字證書一般由數字證書認證機構(Certificate Authority)頒發,證書裡麵包含了真實伺服器的公鑰和網站的一些其他信息,數字證書機構用自己的私鑰加密後發給瀏覽器,瀏覽器使用數字證書機構的公鑰解密後得到真實伺服器的公鑰。這個過程是建立在被大家所認可的證書機構之上得到的公鑰,所以這是一種安全的方式。
常見的對稱加密演算法有DES、3DES、AES、RC5、RC6。非對稱加密演算法應用非常廣泛,如SSH,
HTTPS, TLS,電子證書,電子簽名,電子身份證等等。
參考 DES/3DES/AES區別