㈠ 常用的非對稱密鑰密碼演算法包括des
DES全稱為DataEncryptionStandard,即數據加密標准。
是一種使用密鑰加密的塊演算法,1977年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),並授權在非密級政府通信中使用,隨後該演算法在國際上廣泛流傳開來。
DES是對稱性加密里常見的一種,是一種使用秘鑰加密的塊演算法。秘鑰長度是64位(bit),超過位數秘鑰被忽略。所謂對稱性加密,加密和解密秘鑰相同。
對稱性加密一般會按照固定長度,把待加密字元串分成塊。不足一整塊或者剛好最後有特殊填充字元。
常見的填充有:'pkcs5'、'pkcs7'、'iso10126'、'ansix923'、'zero'類型,包括DES-ECB、DES-CBC、DES-CTR、DES-OFB、DES-CFB。
㈡ des演算法與rsa演算法區別
1、性質不同:RSA公開密鑰密碼體制是一種使用不同的加密密鑰與解密密鑰。DES演算法為密碼體制中的對稱密碼體制,是1972年美國IBM公司研製的對稱密碼體制加密演算法。
2、特點不同:密鑰事實上是56位參與DES運算分組後的明文組和56位的密鑰按位替代或交換的方法形成密文組的加密方法。RSA演算法是由已知加密密鑰推導出解密密鑰在計算上是不可行的密碼體制。
3、密鑰數字不同:RSA允許選擇公鑰的大小。512位的密鑰被視為不安全的;768位的密鑰不用擔心受到除了國家安全管理(NSA)外的其他事物的危害,1024位的密鑰幾乎是安全的。DES演算法把64位的明文輸入塊變為64位的密文輸出塊,所使用的密鑰也是64位。
(2)非私鑰加密演算法也叫什麼演算法擴展閱讀:
注意事項:
當改變明文的前8位元組時,只會影響密文的前8位元組,密文後8位元組不變。因此,在應用3DES演算法對線路傳輸數據加密過程中,若想保證密文的整體變化,要保證每塊明文數據都是變化的。
使用者在設置密鑰的時候應注意,密鑰的前後8位元組不要完全一樣,否則就變為了DES演算法,安全強度就會下降(用戶可根據Cn=Ek3(Dk2(Ek1(Mn)))公式自行推導)。需要特別留意的是,密鑰每位元組中的最後一位是檢驗位,不會參與到加密運算中。
㈢ 加密方式有幾種
加密方式的種類:
1、MD5
一種被廣泛使用的密碼散列函數,可以產生出一個128位(16位元組)的散列值(hash value),用於確保信息傳輸完整一致。MD5由美國密碼學家羅納德·李維斯特(Ronald Linn Rivest)設計,於1992年公開,用以取代MD4演算法。這套演算法的程序在 RFC 1321 標准中被加以規范。
2、對稱加密
對稱加密採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密,也稱為單密鑰加密。
3、非對稱加密
與對稱加密演算法不同,非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密。
如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法。
(3)非私鑰加密演算法也叫什麼演算法擴展閱讀
非對稱加密工作過程
1、乙方生成一對密鑰(公鑰和私鑰)並將公鑰向其它方公開。
2、得到該公鑰的甲方使用該密鑰對機密信息進行加密後再發送給乙方。
3、乙方再用自己保存的另一把專用密鑰(私鑰)對加密後的信息進行解密。乙方只能用其專用密鑰(私鑰)解密由對應的公鑰加密後的信息。
在傳輸過程中,即使攻擊者截獲了傳輸的密文,並得到了乙的公鑰,也無法破解密文,因為只有乙的私鑰才能解密密文。
同樣,如果乙要回復加密信息給甲,那麼需要甲先公布甲的公鑰給乙用於加密,甲自己保存甲的私鑰用於解密。
㈣ 非對稱密鑰演算法有哪些
具體如下。
RSA(RSAalgorithm):由RSA公司發明,是一個支持變長密鑰的公開密鑰算帆碧法,需要加密的文件塊的長度也是可變的,非對稱加密演算法。DSA(DigitalSignatureAlgorithm):數字簽名演算法,是一種標準的DSS(數字灶告簽名標准)嚴格來說不算加密演算法;算ECC(EllipticCurvesCryptography):橢圓曲線密碼編碼學,也屬於公開密鑰演算法。
非對稱加密演算法是一種密鑰的保密方法。非對稱加密演算法需要兩個密鑰:公開密鑰(publickey)和私有密鑰(privatekey)。公隱轎明開密鑰與私有密鑰是一對。
㈤ 密碼學基礎(三):非對稱加密(RSA演算法原理)
加密和解密使用的是兩個不同的秘鑰,這種演算法叫做非對稱加密。非對稱加密又稱為公鑰加密,RSA只是公鑰加密的一種。
現實生活中有簽名,互聯網中也存在簽名。簽名的作用有兩個,一個是身份驗證,一個是數據完整性驗證。數字簽名通過摘要演算法來確保接收到的數據沒有被篡改,再通過簽名者的私鑰加密,只能使用對應的公鑰解密,以此來保證身份的一致性。
數字證書是將個人信息和數字簽名放到一起,經由CA機構的私鑰加密之後生成。當然,不經過CA機構,由自己完成簽名的證書稱為自簽名證書。CA機構作為互聯網密碼體系中的基礎機構,擁有相當高級的安全防範能力,所有的證書體系中的基本假設或者前提就是CA機構的私鑰不被竊取,一旦 CA J機構出事,整個信息鏈將不再安全。
CA證書的生成過程如下:
證書參與信息傳遞完成加密和解密的過程如下:
互質關系:互質是公約數只有1的兩個整數,1和1互質,13和13就不互質了。
歐拉函數:表示任意給定正整數 n,在小於等於n的正整數之中,有多少個與 n 構成互質關系,其表達式為:
其中,若P為質數,則其表達式可以簡寫為:
情況一:φ(1)=1
1和任何數都互質,所以φ(1)=1;
情況二:n 是質數, φ(n)=n-1
因為 n 是質數,所以和小於自己的所有數都是互質關系,所以φ(n)=n-1;
情況三:如果 n 是質數的某一個次方,即 n = p^k ( p 為質數,k 為大於等於1的整數),則φ(n)=(p-1)p^(k-1)
因為 p 為質數,所以除了 p 的倍數之外,小於 n 的所有數都是 n 的質數;
情況四:如果 n 可以分解成兩個互質的整數之積,n = p1 × p2,則φ(n) = φ(p1p2) = φ(p1)φ(p2)
情況五:基於情況四,如果 p1 和 p2 都是質數,且 n=p1 × p2,則φ(n) = φ(p1p2) = φ(p1)φ(p2)=(p1-1)(p2-1)
而 RSA 演算法的基本原理就是歐拉函數中的第五種情況,即: φ(n)=(p1-1)(p2-1);
如果兩個正整數 a 和 n 互質,那麼一定可以找到整數 b,使得 ab-1 被 n 整除,或者說ab被n除的余數是1。這時,b就叫做a的「模反元素」。歐拉定理可以用來證明模反元素必然存在。
可以看到,a的 φ(n)-1 次方,就是a對模數n的模反元素。
n=p x q = 3233,3233寫成二進制是110010100001,一共有12位,所以這個密鑰就是12位。
在實際使用中,一般場景下選擇1024位長度的數字,更高安全要求的場景下,選擇2048位的數字,這里作為演示,選取p=61和q=53;
因為n、p、q都為質數,所以φ(n) = (p-1)(q-1)=60×52= 3120
注意,這里是和φ(n) 互互質而不是n!假設選擇的值是17,即 e=17;
模反元素就是指有一個整數 d,可以使得 ed 被 φ(n) 除的余數為1。表示為:(ed-1)=φ(n) y --> 17d=3120y+1,算出一組解為(2753,15),即 d=2753,y=-15,也就是(17 2753-1)/3120=15。
注意,這里不能選擇3119,否則公私鑰相同??
公鑰:(n,e)=(3233,2753)
私鑰:(n,d)=(3233,17)
公鑰是公開的,也就是說m=p*q=3233是公開的,那麼怎麼求e被?e是通過模反函數求得,17d=3120y+1,e是公開的等於17,這時候想要求d就要知道3120,也就是φ(n),也就是φ(3233),說白了,3233是公開的,你能對3233進行因數分解,你就能知道d,也就能破解私鑰。
正常情況下,3233我們可以因數分解為61*53,但是對於很大的數字,人類只能通過枚舉的方法來因數分解,所以RSA安全性的本質就是:對極大整數做因數分解的難度決定了RSA演算法的可靠性。換言之,對一極大整數做因數分解愈困難,RSA演算法愈可靠。
人類已經分解的最大整數是:
這個人類已經分解的最大整數為232個十進制位,768個二進制位,比它更大的因數分解,還沒有被報道過,因此目前被破解的最長RSA密鑰就是768位。所以實際使用中的1024位秘鑰基本安全,2048位秘鑰絕對安全。
網上有個段子:
已經得出公私鑰的組成:
公鑰:(n,e)=(3233,2753)
私鑰:(n,d)=(3233,17)
加密的過程就是
解密過程如下:
其中 m 是要被加密的數字,c 是加密之後輸出的結果,且 m < n ,其中解密過程一定成立可以證明的,這里省略證明過程。
總而言之,RSA的加密就是使用模反函數對數字進行加密和求解過程,在實際使用中因為 m < n必須成立,所以就有兩種加密方法:
對稱加密存在雖然快速,但是存在致命的缺點就是秘鑰需要傳遞。非對稱加密雖然不需要傳遞秘鑰就可以完成加密和解密,但是其致命缺點是速度不夠快,不能用於高頻率,高容量的加密場景。所以才有了兩者的互補關系,在傳遞對稱加密的秘鑰時採用非對稱加密,完成秘鑰傳送之後採用對稱加密,如此就可以完美互補。