導航:首頁 > 源碼編譯 > TSP演算法問題

TSP演算法問題

發布時間:2023-09-01 09:45:37

A. 遺傳演算法tsp問題求解~80高分求解還會繼續加分

遺傳演算法GA
遺傳演算法:
旅行商問題(traveling saleman problem,簡稱tsp):
已知n個城市之間的相互距離,現有一個推銷員必須遍訪這n個城市,並且每個城市只能訪問一次,最後又必須返回出發城市。如何安排他對這些城市的訪問次序,可使其旅行路線的總長度最短?
用圖論的術語來說,假設有一個圖 g=(v,e),其中v是頂點集,e是邊集,設d=(dij)是由頂點i和頂點j之間的距離所組成的距離矩陣,旅行商問題就是求出一條通過所有頂點且每個頂點只通過一次的具有最短距離的迴路。
這個問題可分為對稱旅行商問題(dij=dji,,任意i,j=1,2,3,…,n)和非對稱旅行商問題(dij≠dji,,任意i,j=1,2,3,…,n)。
若對於城市v={v1,v2,v3,…,vn}的一個訪問順序為t=(t1,t2,t3,…,ti,…,tn),其中ti∈v(i=1,2,3,…,n),且記tn+1= t1,則旅行商問題的數學模型為:
min l=σd(t(i),t(i+1)) (i=1,…,n)
旅行商問題是一個典型的組合優化問題,並且是一個np難問題,其可能的路徑數目與城市數目n是成指數型增長的,所以一般很難精確地求出其最優解,本文採用遺傳演算法求其近似解。
遺傳演算法:
初始化過程:用v1,v2,v3,…,vn代表所選n個城市。定義整數pop-size作為染色體的個數,並且隨機產生pop-size個初始染色體,每個染色體為1到18的整數組成的隨機序列。
適應度f的計算:對種群中的每個染色體vi,計算其適應度,f=σd(t(i),t(i+1)).

評價函數eval(vi):用來對種群中的每個染色體vi設定一個概率,以使該染色體被選中的可能性與其種群中其它染色體的適應性成比例,既通過輪盤賭,適應性強的染色體被選擇產生後台的機會要大,設alpha∈(0,1),本文定義基於序的評價函數為eval(vi)=alpha*(1-alpha).^(i-1) 。[隨機規劃與模糊規劃]
選擇過程:選擇過程是以旋轉賭輪pop-size次為基礎,每次旋轉都為新的種群選擇一個染色體。賭輪是按每個染色體的適應度進行選擇染色體的。
step1 、對每個染色體vi,計算累計概率qi,q0=0;qi=σeval(vj) j=1,…,i;i=1,…pop-size.
step2、從區間(0,pop-size)中產生一個隨機數r;
step3、若qi-1<r<qi,則選擇第i個染色體 ;
step4、重復step2和step3共pop-size次,這樣可以得到pop-size個復制的染色體。
grefenstette編碼:由於常規的交叉運算和變異運算會使種群中產生一些無實際意義的染色體,本文採用grefenstette編碼《遺傳演算法原理及應用》可以避免這種情況的出現。所謂的grefenstette編碼就是用所選隊員在未選(不含淘汰)隊員中的位置,如:
8 15 2 16 10 7 4 3 11 14 6 12 9 5 18 13 17 1
對應:
8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1。
交叉過程:本文採用常規單點交叉。為確定交叉操作的父代,從 到pop-size重復以下過程:從[0,1]中產生一個隨機數r,如果r<pc ,則選擇vi作為一個父代。
將所選的父代兩兩組隊,隨機產生一個位置進行交叉,如:
8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1
6 12 3 5 6 8 5 6 3 1 8 5 6 3 3 2 1 1
交叉後為:
8 14 2 13 8 6 3 2 5 1 8 5 6 3 3 2 1 1
6 12 3 5 6 8 5 6 3 7 3 4 3 2 4 2 2 1
變異過程:本文採用均勻多點變異。類似交叉操作中選擇父代的過程,在r<pm 的標准下選擇多個染色體vi作為父代。對每一個選擇的父代,隨機選擇多個位置,使其在每位置按均勻變異(該變異點xk的取值范圍為[ukmin,ukmax],產生一個[0,1]中隨機數r,該點變異為x'k=ukmin+r(ukmax-ukmin))操作。如:
8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1
變異後:
8 14 2 13 10 6 3 2 2 7 3 4 5 2 4 1 2 1
反grefenstette編碼:交叉和變異都是在grefenstette編碼之後進行的,為了循環操作和返回最終結果,必須逆grefenstette編碼過程,將編碼恢復到自然編碼。
循環操作:判斷是否滿足設定的帶數xzome,否,則跳入適應度f的計算;是,結束遺傳操作,跳出。

//c++的程序
#include<iostream.h>
#include<stdlib.h>
template<class T>
class Graph
{
public:
Graph(int vertices=10)
{
n=vertices;
e=0;
}
~Graph(){}
virtual bool Add(int u,int v,const T& w)=0;
virtual bool Delete(int u,int v)=0;
virtual bool Exist(int u,int v)const=0;
int Vertices()const{return n;}
int Edges()const{return e;}
protected:
int n;
int e;
};
template<class T>
class MGraph:public Graph<T>
{
public:
MGraph(int Vertices=10,T noEdge=0);
~MGraph();
bool Add(int u,int v,const T& w);
bool Delete(int u,int v);
bool Exist(int u,int v)const;
void Floyd(T**& d,int**& path);
void print(int Vertices);
private:
T NoEdge;
T** a;
};
template<class T>
MGraph<T>::MGraph(int Vertices,T noEdge)
{
n=Vertices;
NoEdge=noEdge;
a=new T* [n];
for(int i=0;i<n;i++){
a[i]=new T[n];
a[i][i]=0;
for(int j=0;j<n;j++)if(i!=j)a[i][j]=NoEdge;
}
}
template<class T>
MGraph<T>::~MGraph()
{
for(int i=0;i<n;i++)delete[]a[i];
delete[]a;
}
template<class T>
bool MGraph<T>::Exist(int u,int v)const
{
if(u<0||v<0||u>n-1||v>n-1||u==v||a[u][v]==NoEdge)return false;
return true;
}
template<class T>
bool MGraph<T>::Add(int u,int v,const T& w)
{
if(u<0||v<0||u>n-1||v>n-1||u==v||a[u][v]!=NoEdge){
cerr<<"BadInput!"<<endl;
return false;
}
a[u][v]=w;
e++;
return true;
}
template<class T>
bool MGraph<T>:delete(int u,int v)
{
if(u<0||v<0||u>n-1||v>n-1||u==v||a[u][v]==NoEdge){
cerr<<"BadInput!"<<endl;
return false;
}
a[u][v]=NoEdge;
e--;
return true;
}
template<class T>
void MGraph<T>::Floyd(T**& d,int**& path)
{
d=new T* [n];
path=new int* [n];
for(int i=0;i<n;i++){
d[i]=new T[n];
path[i]=new int[n];
for(int j=0;j<n;j++){
d[i][j]=a[i][j];
if(i!=j&&a[i][j]<NoEdge)path[i][j]=i;
else path[i][j]=-1;
}
}
for(int k=0;k<n;k++){
for(i=0;i<n;i++)
for(int j=0;j<n;j++)
if(d[i][k]+d[k][j]<d[i][j]){
d[i][j]=d[i][k]+d[k][j];
path[i][j]=path[k][j];
}
}
}
template<class T>
void MGraph<T>::print(int Vertices)
{
for(int i=0;i<Vertices;i++)
for(int j=0;j<Vertices;j++)
{

cout<<a[i][j]<<' ';if(j==Vertices-1)cout<<endl;
}
}
#define noEdge 10000
#include<iostream.h>
void main()
{
cout<<"請輸入該圖的節點數:"<<endl;
int vertices;
cin>>vertices;
MGraph<float> b(vertices,noEdge);
cout<<"請輸入u,v,w:"<<endl;
int u,v;
float w;
cin>>u>>v>>w;
while(w!=noEdge){
//u=u-1;
b.Add(u-1,v-1,w);
b.Add(v-1,u-1,w);
cout<<"請輸入u,v,w:"<<endl;
cin>>u>>v>>w;
}
b.print(vertices);
int** Path;
int**& path=Path;
float** D;
float**& d=D;
b.Floyd(d,path);
for(int i=0;i<vertices;i++){
for(int j=0;j<vertices;j++){
cout<<Path[i][j]<<' ';
if(j==vertices-1)cout<<endl;
}
}
int *V;
V=new int[vertices+1];
cout<<"請輸入任意一個初始H-圈:"<<endl;
for(int n=0;n<=vertices;n++){

cin>>V[n];
}
for(n=0;n<55;n++){
for(i=0;i<n-1;i++){
for(int j=0;j<n-1;j++)
{
if(i+1>0&&j>i+1&&j<n-1){
if(D[V[i]][V[j]]+D[V[i+1]][V[j+1]]<D[V[i]][V[i+1]]+D[V[j]][V[j+1]]){
int l;
l=V[i+1];V[i+1]=V[j];V[j]=l;
}
}
}
}
}
float total=0;
cout<<"最小迴路:"<<endl;
for(i=0;i<=vertices;i++){

cout<<V[i]+1<<' ';
}
cout<<endl;
for(i=0;i<vertices;i++)
total+=D[V[i]][V[i+1]];
cout<<"最短路徑長度:"<<endl;
cout<<total;
}

這個你 看得懂么?

B. TSP問題的演算法

你是說有10個點,想選4個點么,找4個點+起點的周遊最小值?
點比較少,枚舉4個點,C(10,4) = 210 種情況,然後找所有情況的最小值。那麼最後這4個點就是你要的4個點。

C. tSp Concorder演算法原理

tsp問題遺傳演算法將多目標按照線性加權的方式轉化為單目標,然後應用傳統遺傳演算法求解
其中w_i表示第i個目標的權重,f_k表示歸一化之後的第i個目標值。我們很容易知道,這類方法的關鍵是怎麼設計權重。比如,Random Weight Genetic Algorithm (RWGA) 採用隨機權重的方式,每次計算適應度都對所有個體隨機地產生不同目標的權重,然後進行選擇操作。Vector-Evaluated Genetic Algorithm (VEGA) 也是基於線性加權的多目標遺傳演算法。如果有K個目標,VEGA 會隨機地將種群分為K個同等大小子種群,在不同的子種群按照不同的目標函數設定目標值,然後再進行選擇操作。VEGA 實質上是基於線性加權的多目標遺傳演算法。VEGA 是第一個多目標遺傳演算法,開啟了十幾年的研究潮流。
1.TSP問題是指假設有一個旅行商人要拜訪n個城市,他必須選擇所要走的路徑,路徑的限制是每個城市只能拜訪一次,而且最後要回到原來出發的城市。路徑的選擇目標是要求得的路徑路程為所有路徑之中的最小值。本文使用遺傳演算法解決att30問題,即30個城市的旅行商問題。旅行商問題是一個經典的組合優化問題。一個經典的旅行商問題可以描述為:一個商品推銷員要去若干個城市推銷商品,該推銷員從一個城市出發,需要經過所有城市後,回到出發地。應如何選擇行進路線,以使總的行程最短。從圖論的角度來看,該問題實質是在一個帶權完全無向圖中,找一個權值最小的Hamilton迴路。由於該問題的可行解是所有頂點的全排列,隨著頂點數的增加,會產生組合爆炸,它是一個NP完全問題。TSP問題可以分為對稱和不對稱。在對稱TSP問題中,兩座城市之間來回的距離是相等的,形成一個無向圖,而不對稱TSP則形成有向圖。對稱性TSP問題可以將解的數量減少了一半。所以本次實驗的TSP問題使用att48數據,可在tsplib中下載數據包。演化演算法是一類模擬自然界遺傳進化規律的仿生學演算法,它不是一個具體的演算法,而是一個演算法簇。遺傳演算法是演化演算法的一個分支,由於遺傳演算法的整體搜索策略和優化計算是不依賴梯度信息,所以它的應用比較廣泛。我們本次實驗同樣用到了遺傳演算法(用MATLAB編寫)來解決TSP問題。

D. 對於大規模TSP問題,為什麼遍歷演算法不可行而貪心演算法可行

TSP屬於NPC問題,一般只能靠近似演算法求出近似解,問題規模小的時候,可以直接窮舉問題空間,得出最優解,不過問題規模一大就不行了,問題空間是指數暴漲的,這時候只能退而求其次,求近似最優解,而對應的近似演算法中會大量使用貪心策略,所以其實不是可不可行的問題,貪心犧牲了 解的精度(求得的不一定是最優解),但換來了時間上可觀的節約(直接降到多項式)。

E. 遺傳演算法解決旅行商問題(TSP)一:初始化和適應值

旅行商問題(Travelling salesman problem, TSP)是這樣一個問題:給定一系列城市和每對城市之間的距離,求解訪問每一座城市一次並回到起始城市的最短迴路。

設有n個城市,城市i和城市j之間的距離是 。設

那麼TSP問題使下面的目標最小:

首先,設置一下參數:

這里假設有10個城市,其坐標定義於pos變數,第一行是各個城市的x坐標,第二行是各個城市的y坐標,比如第一個城市的坐標為(1,1),第三個城市的坐標為(2,2)。之後計算處各個城市之間的距離。

種群中每個個體,都表示著一個訪問城市的路徑,這意味著每個個體都要覆蓋所有城市,但是只能經過一個城市一次。

根據種群中每個個體中城市的順序,可以求出這個個體所代表的距離,距離越大,適應度越小,因此用距離的倒數作為個體的適應度值。

F. TSP演算法在實際中有什麼意義

不要問解決數學問題有什麼用,總會有用的,數學是自然科學的基礎。

TSP問題的概述
旅行商問題,即TSP問題(Traveling Salesman Problem)是數學領域中著名問題之一。假設有一個旅行商人要拜訪N個城市,他必須選擇所要走的路徑,路徑的限制是每個城市只能拜訪一次,而且最後要回到原來出發的城市。路徑的選擇目標是要求得的路徑路程為所有路徑之中的最小值,這是一個NP難問題。
TSP問題的由來
TSP的歷史很久,最早的描述是1759年歐拉研究的騎士周遊問題,即對於國際象棋棋盤中的64個方格,走訪64個方格一次且僅一次,並且最終返回到起始點。
TSP由美國RAND公司於1948年引入,該公司的聲譽以及線形規劃這一新方法的出現使得TSP成為一個知名且流行的問題。
TSP在中國的研究
同樣的問題,在中國還有另一個描述方法:一個郵遞員從郵局出發,到所轄街道投郵件,最後返回郵局,如果他必須走遍所轄的每條街道至少一次,那麼他應該如何選擇投遞路線,使所走的路程最短?這個描述之所以稱為中國郵遞員問題(Chinese Postman Problem CPP)因為是我國學者管梅古教授於1962年提出的這個問題並且給出了一個解法。

閱讀全文

與TSP演算法問題相關的資料

熱點內容
計算機網路原理pdf 瀏覽:750
吃雞國際體驗服為什麼伺服器繁忙 瀏覽:92
php中sleep 瀏覽:488
vr怎麼看視頻演算法 瀏覽:84
手機app如何申報個人所得稅零申報 瀏覽:692
如何截獲手機app連接的ip 瀏覽:330
冰箱壓縮機是否需要電容 瀏覽:344
python列表每一行數據求和 瀏覽:274
自己有一台伺服器可以玩什麼 瀏覽:656
社會學波普諾pdf 瀏覽:584
解壓做食物的小視頻 瀏覽:758
pdf怎麼單獨設置文件夾 瀏覽:474
業務邏輯程序員 瀏覽:659
addto新建文件夾什麼意思 瀏覽:162
有伺服器地址怎麼安裝軟體 瀏覽:660
安卓如何完全清除數據 瀏覽:692
安卓安卓證書怎麼信任 瀏覽:54
伺服器被攻擊如何解決 瀏覽:223
學霸變成程序員 瀏覽:883
c語言編譯錯誤fatalerror 瀏覽:443