導航:首頁 > 源碼編譯 > 差分四則運演算法則證明

差分四則運演算法則證明

發布時間:2023-09-02 16:17:41

① 函數極限的四則運演算法則是什麼

法則:連續初等函數,在定義域范圍內求極限,可以將該點直接代入得極限值,因為連續函數的極限值就等於在該點的函數值。

以下是函數極限的相關介紹:

函數極限是高等數學最基本的概念之一,導數等概念都是在函數極限的定義上完成的。函數極限性質的合理運用。常用的函數極限的性質有函數極限的唯一性、局部有界性、保序性以及函數極限的運演算法則和復合函數的極限等等。

問題的關鍵在於找到符合定義要求的 ,在這一過程中會用到一些不等式技巧,例如放縮法等。1999年的研究生考試試題中,更是直接考察了考生對定義的掌握情況。

在運用以上兩條去求函數的極限時尤需注意以下關鍵之點。一是先要用單調有界定理證明收斂,然後再求極限值。二是應用夾擠定理的關鍵是找到極限值相同的函數 ,並且要滿足極限是趨於同一方向 ,從而證明或求得函數 的極限值。

以上資料參考網路——函數極限

② 什麼叫差分,差分方程是啥

1、差分又名差分函數或差分運算,差分的結果反映了離散量之間的一種變化,是研究離散數學的一種工具。它將原函數f(x) 映射到f(x+a)-f(x+b) 。差分運算,相應於微分運算,是微積分中重要的一個概念。差分又分為前向差分、向後差分及中心差分三種。

2、差分方程(是一種遞推地定義一個序列的方程式:序列的每一項目是定義為前一項的函數。某些簡單定義的遞推關系式可能會表現出非常復雜的(混沌的)性質,他們屬於數學中的非線性分析領域。

(2)差分四則運演算法則證明擴展閱讀:

差分方程舉例:

dy+y*dx=0,y(0)=1 是一個微分方程, x取值[0,1] (註:解為y(x)=e^(-x));

要實現微分方程的離散化,可以把x的區間分割為許多小區間 [0,1/n],[1/n,2/n],...[(n-1)/n,1]

這樣上述微分方程可以離散化為:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 個離散方程組)

利用y(0)=1的條件,以及上面的差分方程,可以計算出 y(k/n) 的近似值了。

差分方程的性質

1、Δk(xn+yn)=Δkxn+Δkyn。

2、Δk(cxn)=cΔkxn。

3、Δkxn=∑(-1)jCjkXn+k-j。

4、數列的通項為n的無限次可導函數,對任意k>=1,存在η,有 Δkxn=f(k)(η)。

③ 極限四則運演算法則證明求解

具體回答如圖:


極限四則運演算法則的前提是兩個極限存在,當有一個極限本身是不存在的,則不能用四則運演算法則。

(3)差分四則運演算法則證明擴展閱讀:

設{xn} 是一個數列,如果對任意ε>0,存在N∈Z*,只要 n 滿足 n > N,則對於任意正整數p,都有|xn+p-xn|<ε。

在區間(a-ε,a+ε)之外至多隻有N個(有限個)點;所有其他的點xN+1,xN+2,...(無限個)都落在該鄰域之內。這兩個條件缺一不可,如果一個數列能達到這兩個要求,則數列收斂於a;而如果一個數列收斂於a,則這兩個條件都能滿足

④ 數列極限四則運算的證明例題看不懂請高手指教!

首先要注意,目標是| An•Bn-AB |<ε,但已知的是:limAn=A,limBn=B,所以證明中,一定要用到|An-A|和|Bn-B|。於是通過絕對值不等式| An•Bn-AB | ≤|An-A||Bn|+|A||Bn-B|找到與這兩個式子(|An-A|和|Bn-B|)的關系。如果|An-A||Bn|<ε/2,|A||Bn-B|<ε/2,問題就解決了。這兩個不等式等價於:|An-A|<ε/(2|Bn|),|Bn-B|<ε/(2|A|),為了清晰起見,分母加了括弧。|A|是個常數,已經沒有問題,但|Bn|不是常數,於是根據收斂數列的有界性,即:|Bn|<M,找到與n無關的正常數M。於是|An-A||Bn|<|An-A|M<ε/2,後一個不等式等價於:|An-A|<ε/(2M),這里已經假定M是正數,絕對值符號就不寫了。這就是ε/(2M)的由來,而不是突然冒出來的。

證明中,快到最後的時候有一句話:由於不等式①②③,當n>N時,我們有|An•Bn-AB|<ε/2+ε/2=ε
其實仔細寫來,應該是:
|An•Bn-AB|≤|An-A||Bn|+|A||Bn-B|<|An-A|M+|A||Bn-B|<ε/(2M)•M+|A|•ε/(2|A|)=ε/2+ε/2=ε
第一個「≤」用了①,第二個「<」用了「|Bn|<M 」,第三個「<」用了②③。

另外,如果limAn=A,一般得到|An-A|<ε,肯定沒有問題,如果寫成|An-A|<ε/2,空侍應該也要理解。證明中就強調「對於任意給定的ε>0,無論怎樣小」。這句話一定要充分理解,一個是「任意」,一個是「無論怎樣小」。所以一定要理解「ε」是充分的小。因此,如果limAn=A,我們可以得到|An-A|<ε,也可以得到|An-A|<ε/2 或舉前者 |An-A|<2ε,甚至如果常數 a>0,我們同樣可以得到|An-A|<ε/a 或者 |An-A|<aε。但是,一定要注意 a 與數列的下標 n 無關,是一般函數的話,務必和函數的自變數無關。證明中在引出常數「M」時,特別強調「存在一個與n無關的斗答吵正數M」。

其實如果我們最後得到:|An•Bn-AB|<ε'M+|A|•ε''也是可以的,這里的ε'是由limAn=A得到的,ε''是由limBn=B得到的。但這樣一則不漂亮,二則還要說明「ε'M+|A|•ε''」也是充分小。與其都要說明,那就放在中間了,這樣最後得到|An•Bn-AB|<ε,又漂亮又可以直接寫:「這就是說,An•Bn的極限存在,且等於AB」了。

至於ε要不要找一個正常數與其相乘除,找怎樣的正常數,就要看題目了。比如,上面的證明如果改成三個已知極限的乘積,或許就要用到ε/3了。給ε找一個正常數與其相乘除,是解這一類題目的「慣用伎倆」。

閱讀全文

與差分四則運演算法則證明相關的資料

熱點內容
光遇安卓與ios什麼時候互通 瀏覽:596
js如何運行時編譯 瀏覽:915
引力app在哪裡下載 瀏覽:609
編寫app如何得到錢 瀏覽:800
吉利汽車軟體放哪個文件夾安裝 瀏覽:223
多文件編譯c 瀏覽:541
頭頂加密後為什麼反而更稀疏 瀏覽:793
離心機壓縮機揚程高 瀏覽:658
xshell連接linux命令 瀏覽:5
把多個文件夾的內容合並在一起 瀏覽:483
基於單片機的澆花系統設計ppt 瀏覽:685
卷積碼編解碼及糾錯性能驗證實驗 瀏覽:354
請在刪除驅動器之前暫停加密什麼意思 瀏覽:787
光催化pdf 瀏覽:98
java字元串包含某字元 瀏覽:528
ssm身份認證源碼 瀏覽:466
預排序遍歷樹演算法 瀏覽:671
加密裝置如何打開ping功能 瀏覽:480
python下載372 瀏覽:903
u盤子文件夾隱藏 瀏覽:297