① 如何計算CPU執行程序的時間
單道時:A的cpu使用率是62.5%,B的使用率是37.5%;多道時:cpu使用率是:88%。單道的時候只需要算cpu執行時間在總時間里的比例就可以,,,多道執行的時候,是以時間片來執行的,要注意搶占式等cpu多道運行方式,如果無視這個的話,只需要畫一個cpu使用的圖,就能得到兩個程序的總執行時間是45s,,cpu使用40s,有5s的時間是B等待A執行設備2的程序。
② 一個演算法的運行時所消耗的時間是如何測出來的
在忽略機器性能的基礎上我們用演算法時間復雜度來計算演算法執行的時間
1.時間頻度
一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.計算方法
1. 一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n)) 分析:隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。 2. 在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n)) 例:演算法: for(i=1;i<=n;++i) { for(j=1;j<=n;++j) { c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n的平方 次 for(k=1;k<=n;++k) c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n的三次方 次 } } 則有 T(n)= n的平方+n的三次方,根據上面括弧里的同數量級,我們可以確定 n的三次方 為T(n)的同數量級 則有f(n)= n的三次方,然後根據T(n)/f(n)求極限可得到常數c 則該演算法的 時間復雜度:T(n)=O(n的三次方)
3.分類
按數量級遞增排列,常見的時間復雜度有: 常數階O(1),對數階O(log2n),線性階O(n), 線性對數階O(nlog2n),平方階O(n2),立方階O(n3),..., k次方階O(nk), 指數階O(2n) 。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,演算法的執行效率越低。
③ 設計一個好的演算法通常要考慮哪些要求
數據結構中評價一個好的演算法,應該從四個方面來考慮,分別是:
一、演算法的正確性。
二、演算法的易讀性。
三、是演算法的健壯性。
四、是演算法的時空效率(運行)。
演算法的設計取決於數據(邏輯)結構,演算法的實現取決於所採用的存儲結構。數據的存儲結構本質上是其邏輯結構在計算機存儲器中的實現。為了全面反映一個數據的邏輯結構,它在內存中的影像包括兩個方面,即數據元素之間的信息和數據元素之間的關系。
不同的數據結構有相應的操作。數據的操作是在數據的邏輯結構上定義的操作演算法,如檢索、插入、刪除、更新和排序。
(3)演算法的執行時間怎樣計算擴展閱讀
該演算法的一般性質包括:
1.通用性對於任何符合輸入類型的輸入數據,都可以根據演算法解決問題,並且包保證了計算結構的正確性。
2.演算法的每一條指令都必須能夠被人或機器執行。
3.確定性演算法應該在每一步之後都有明確的下一步指示。也就是說,確保每個步驟都有下一步行動的指示,不缺少或只包含含糊的下一步行動指示。
4.有限演算法的執行必須在有限步結束。