① 想找到量子粒子群演算法java版本程序代碼!!!哪位大神有給我發份唄!!!
很少見到java的QPSO代碼,一般都是matlab和C++的,樓主或者可以自己用matlab代碼修改成java的
② 方偉的個人簡介
以群體智能演算法中的粒子群優化(particle swarm optimization, PSO)演算法和所在課題組提出的量子行為粒子群優化(quantum-behaved PSO, QPSO)演算法為研究對象,從這兩種演算法的理論和實際應用出發,對它們的理論基礎及性能改進方法做了深入的研究,並將它們應用在工程優化問題中以驗證演算法的優化能力。
圍繞這些研究內容,已在國內外權威刊物上發表論文22篇,其中SCI(E)檢索的論文11篇,EI檢索的論文7篇。作為第二著作者,於2011年8月出版了專著《量子行為粒子群優化:原理及其應用》;作為主要撰寫人,參與完成了英文學術專著「Particle Swarm Optimization: Classical and Quantum Perspectives」的撰寫工作。目前已授權發明專利2項,軟體著作權1項。
於2011年作為負責人得到了國家自然科學基金項目的資助,另外還主持了教育部自主科研項目1項、江蘇省自然科學基金項目1項、江南大學青年科學基金項目1項和江南大學科學基金項目1項,目前還參與國家自然科學基金面上項目1項。現為IEEE Computer Science Society、IEEE Computational Intelligence Society會員。
③ 丁世飛的丁世飛.學術兼職
擔任下列專家委員會委員:
(1)中國計算機學會傑出會員、資深會員
(2)中國計算機學會人工智慧與模式識別專委會委員
(3)中國計算機學會多值邏輯與模糊邏輯專委會常委委員
(4)中國人工智慧學會知識工程與分布式智能專業委員會委員
(5)中國人工智慧學會機器學學習專業委員會委員
(6)中國人工智慧學會粗糙集與軟計算專業委員會常委委員
(7)江蘇省計算機學會人工智慧專業委員會常委委員
(8)江蘇省計算機學會大數據專家委員會委員
擔任下列國際期刊編委:
(1)《IJCI: International Journal of Collaborative Intelligence》主編
(2)《JDCTA: Journal of Digital Contents Technology and Application》副主編
(3)《JCIT: Journal of Convergence Information Technology》編委
(4)《AISS: Advances in Information Sciences and Service Sciences》編委
(5)《IJACT: International Journal of Advancements in Computing Technology》編委
(6)《JCP: Journal of Computers》編委
(7)《JSW: Journal of Software》編委
(8)《IPL:CInformation Processing Letters》編委
(9)《AMIS: Applied Mathematics & Information Sciences》編委
擔任下列國際期刊特約編輯:
(1)《Applied Mathematics & Information Sciences》特約編輯(Guest Editor)
(2)《INFORMATION》的特約編輯(Guest Editor)
(3)《Neurocpmputing》特約編輯(Guest Editor)
(4)《The Scientific World Journal》的特約編輯(Guest Editor)
(5)《Mathematical Problems in Engineering》的特約編輯(Guest Editor)
(6)《Journal of Computers (JCP)》特約編輯(Guest Editor)
(7)《Journal of Software (JSW)》特約編輯(Guest Editor)
(8)《Journal of Networks (JNW)》的特約編輯(Guest Editor)
擔任下列國際SCI源刊特約審稿專家:
(1)《Journal of Information Science》
(2)《Applied Soft Computing》
(3)《Information Sciences》
(4)《Computational Statistics and Data Analysis》
(5)《IEEE Transactions on Fuzzy Systems》
(6)《International Journal of Pattern Recognition and Artificial Intelligence》
(7)《Neurocpmputing》
(8)《Soft Computing》
(9)《Pattern Recognition》
(10)《Pattern Recognition Letters》
擔任下列國內核心期刊審稿專家:
(1)《計算機學報》
(2)《軟體學報》
(3)《計算機研究與發展》
(4)《中國科學》
(5)《電子學報》
(6)《模式識別與人工智慧》
(7)《計算機科學》
(8)《小型微型計算機系統》
(9)《計算機應用研究》
(10)《計算機工程與科學》
(11)《微電子學與計算機》
擔任下列國內外會議PC Chair or Member:
(1)全國智能信息處理學術會議(NCIIP)程序委員會主席
(2)江蘇省人工智慧學術會議程序委員會主席
(3)201220132014年信息、智能與計算國際研討會主席
(4)粒度計算國際會議程序委員會委員
(5)智能信息處理國際會議程序委員會委員
(6)中國機器學習會議程序委員會委員
(7)中國粗糙集與軟計算、中國粒計算、中國Web智能聯合會議程序委員會委員等。
丁世飛.研究方向
模式識別與人工智慧
機器學習與數據挖掘
粗糙集與軟計算
粒度計算
感知與認知計算
丁世飛.學術成果
已完成的項目:
1. 2001-2003參加並完成國家自然科學基金項目「信息模式識別理論及其在地學中的應用」的研究(項目編號: 40074001)
2. 1999-2001主持完成省教育廳項目「信息模式識別理論及其在害蟲預測預報中的應用研究」
3. 1998-2000主持完成省教育廳項目「農作物病蟲害現代生物數學預報技術研究」
4. 2005-2006主持中國博士後科學基金項目「視感知學習理論及其應用研究」(No.2005037439)
5. 2004-2006主持山東省作物生物學國家重點實驗室開放基金項目「山東省玉米病蟲害數字模式分類的研究」(No.20040010)
6. 2006-2008參加國家自然科學基金項目「多元數據的信息模式研究與地學數據分析」(No.40574001)
7. 2006-2009參加國家863高技術項目「基於感知機理的智能信息處理技術」(No. 2006AA01Z128)
8. 2007-2010主持中國科學院智能信息處理重點實驗室開放基金項目「基於認知的模式特徵分析理論與演算法研究」(No.IIP2006-2)
9. 2010-2012主持江蘇省基礎研究計劃(自然科學基金)項目「面向高維復雜數據的粒度知識發現研究」(No.BK2009093)
10.2011-2012主持北京郵電大學智能通信軟體與多媒體北京市重點實驗室開放課題 「粒度SVM方法與應用研究」
11. 2010-2012參加國家自然科學基金項目「分布式計算環境下的並行數據挖掘演算法與理論研究」(No.60975039)
12. 2011-2013主持中國科學院智能信息處理重點實驗室開放基金項目「高維復雜數據的粒度支持向量機理論與演算法研究」(No.IIP2010-1)
目前正在進行的項目:
1. 2013.1-2017.12主持國家重點基礎研究發展計劃(973計劃)課題「腦機協同的認知計算模型」(No.2013CB329502)
2. 2014.1-2017.12主持國家自然科學基金項目「面向大規模復雜數據的多粒度知識發現關鍵理論與技術研究」 (No. 61379101)
3. 2011.1-2013.12參加國家自然科學基金項目「多元空間的模式分析方法研究及其在測量中的應用」(No.41074003)
已出版著作:
1. 丁世飛,靳奉祥,趙相偉著. 現代數據分析與信息模式識別. 北京:科學出版社,2012
2. 丁世飛編著. 人工智慧. 北京: 清華大學出版社, 2010
3. 史忠植著. 知識工程. 北京: 清華大學出版社, 2011 (丁世飛等參編)
4. 史忠植著. 神經網路, 北京: 高等教育出版社, 2009 (丁世飛, 許新征等參編)
已發表論文:
2014年
[1] Shifei Ding, Hongjie Jia, Liwen Zhang, Fengxiang Jin. Research of semi-supervised spectral clustering algorithm based on pairwise constraints. Neural Computing and Applications, 2014,24(1):211-219. (SCI, EI)
[2] Shifei Ding, Hongjie Jia, Jinrong Chen, Fengxiang Jin. Granular Neural Networks.Artificial Intelligence Review, 2014,41(3): 373-384. (SCI, EI)
[3] Shifei Ding, Huajuan Huang, Xinzheng Xu, Jian Wang. Polynomial Smooth Twin Support Vector Machines. Applied Mathematics & Information Sciences, 2014, 8(4) (SCI,EI)
[4] Shifei Ding, Zhong Shi. Track on Intelligent Computing and Applications. Neurocomputing, 2014, vol.130, 1-2.(SCI, EI)
[5] Shifei Ding, Xiaopeng Hua. Recursive least squares projection twin support vector machines. Neurocomputing, 2014, vol.130, 3-9. (SCI, EI)
[6]花小朋,丁世飛. 局部保持對支持向量機. 計算機研究與發展, 2014, 51(3)(EI)
2013年
[1] Xinzheng Xu, Shifei Ding, Weikuan Jia, Gang Ma, Fengxiang Jin. Research of assembling optimized classification algorithm by neural network based on Ordinary Least Squares (OLS). Neural Computing and Applications, 2013,22(1):187-193.(SCI, EI)
[2] Shifei Ding, Hui Li, Chunyang Su, Junzhao Yu, Fengxiang Jin. Evolutionary artificial neural networks: a review. Artificial Intelligence Review, 2013, 39(3):251-260. (SCI, EI)
[3] Li Hui, Ding Shifei. Research of Indivial Neural Network Generation and Ensemble Algorithm Based on Quotient Space Granularity Clustering. Applied Mathematics & Information Sciences, 2013, 7(2):701-708. (SCI, EI)
[4] Hui Li, Shifei Ding. Research and Development of Granular Neural Networks. Applied Mathematics & Information Sciences, 2013, 7(3):1251-1261.(SCI, EI)
[5] Shifei Ding, Bingjuan Qi, Hongjie Jia, Hong Zhu. Research of Semi-supervised Spectral Clustering Based on Constraints Expansion. Neural Computing and Applications, 2013, 22 (Suppl 1):405-410. (SCI, EI)
[6] Shifei Ding, Yanan Zhang, Jinrong Chen, Weikuan Jia. Research on Using Genetic Algorithms to Optimize Elman Neural Networks. Neural Computing and Applications, 2013, 23(2):293-297.(SCI, EI)
[7] Hua-juan Huang, Shi-fei Ding, Zhong- Shi. Primal least squares twin support vector regression. Journal of Zhejiang University SCIENCE C, 2013, 14(9):722-732. (SCI, EI)
[8] Shifei Ding, Youzhen Han, Junzhao Yu, Yaxiang Gu. A fast fuzzy support vector machine based on information granulation. Neural Computing and Applications, 2013, 23(suppl 1):S139-S144(SCI, EI)
[9] 黃華娟,丁世飛. 多項式光滑孿生支持向量回歸機. 微電子學與計算機, 2013, 30(10):5-8.
[10] 丁世飛,黃華娟. 加權光滑CHKS孿生支持向量機. 軟體學報, 2013, 24(11):2548-2557.
[11] 賈洪傑,丁世飛.基於鄰域粗糙集約減的譜聚類演算法.南京大學學報.自然科學版,2013, 49(5):619-627.
[12] Hong Zhu,Shifei Ding, Xinzheng Xu, Li Xu. A parallel attribute rection algorithm based on Affinity Propagation clustering. Journal of Computers, 2013, 8(4):990-997. (EI)
[13] Hong Zhu, Shifei Ding, Han Zhao, Lina Bao. Attribute granulation based on attribute discernibility and AP algorithm. Journal of Software, 8(4):834-841.(EI)
[14] Yanan Zhang, Shifei Ding, Xinzheng Xu, Han Zhao, Wanqiu Xing. An Algorithm Research for Prediction of Extreme Learning Machines Based on Rough Sets. Journal of Computers, 2013, 8(5): 1335-1342.(EI)
[15] Hui Li, Shifei Ding. A Novel Neural Network Classification Model based on Covering and Affinity Propagation Clustering Algorithm. Journal of Computational Information Systems, 2013, 9(7):2565-2573. (EI)
[16] Shifei Ding, Junzhao Yu, Huajuan Huang, Han Zhao. Twin Support Vector Machines Based on Particle Swarm Optimization. Journal of Computers, 2013, 8(9): 2296-2303. (EI)
[17] Huajuan Huang,Shifei Ding, Fulin Wu. Invasive Weed Optimization Algorithm for Optimizating the Parameters of Mixed Kernel Twin Support Vecotr Machines. Journal of Computers, 2013, 8(8): 2077-2084. (EI)
[18] Hongjie Jia, Shifei Ding, Hong Zhu, Fulin Wu, Lina Bao. A Feature Weighted Spectral Clustering Algorithm Based on Knowledge Entropy. Journal of Software, 2013, 8(5): 1101-1108. (EI)
[19] Tongfeng Sun, Shifei Ding, Zihui Ren Novel Image Recognition Based on Subspace and SIFT. Journal of Software, 2013, 8(5): 1109-1116.(EI)
[20] Shifei Ding, Fulin Wu, Ru Nie, Junzhao Yu, Huajuan Huang. Twin Support Vector Machines Based on Quantum Particle Swarm Optimization. Journal of Software, 2013, 8(7): 1743-1750. (EI)
[21] Ding Shifei, Zhang Yanan, Xu Xinzheng, Bao Lina. A novel extreme learning machine based on hybrid kernel function. Journal of Computers,2013, 8(8):2110-2117.(EI)
[22] Shifei Ding, Huajuan Huang, Ru Nie. Forecasting Method of Stock Price Based on Polynomial Smooth Twin Support Vector Regression. Lecture Notes in Computer Science, 2013, Volume 7995, 2013, pp 96-105. (EI)
2012年
[1]Shifei Ding, Hong Zhu,Weikuan Jia,Chunyang Su. A survey on feature extraction for pattern recognition.Artificial Intelligence Review,2012, 37(3):169-180. (SCI, EI)
[2] Shifei Ding,Li Xu,Chunyang Su,Fengxiang Jin. An optimizing method of RBF neural network based on genetic algorithm. Neural Computing and Applications, 2012, 21(2):333-336. (SCI, EI)
[3] Shifei Ding,Bingjuan Qi. Research Of granular support vector machine. Artificial Intelligence Review, 2012, 38(1):1-7. (SCI, EI)
[4] Xin-zheng XU, Shi-fei DING, Zhong- SHI, Hong ZHU. Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm. Journal of Zhejiang University-SCIENCE C (Computers & Electronics), 2012,13(2):131-138. (SCI, EI)
[5] Bingjuan Qi,Shifei Ding, Huajuan Huang, Junzhao Yu. A Support Vector Extraction Method based on Clustering Membership.International Journal of Digital Content Technology and its Applications, 2012, 6(13):1-10. (EI)
[6] Chang Tong, Shi-fei Ding, Hong Zhu, Hongjie Jia. A Granularity Attribute Rection Algorithm Based on Binary Discernibility Matrix. International Journal of Advancements in Computing Technology, 2012, 4(12):213-221. (EI)
[7] Xiaopeng Hua, Shifei Ding. Matrix Pattern Based Projection Twin Support Vector Machines. International Journal of Digital Content Technology and its Applications, 2012, 6(20):172-181. (EI)
[8] Junzhao Yu, Shifei Ding, Huajuan Huang. Twin Support Vector Machines Based on Rough Sets. International Journal of Digital Content Technology and its Applications, 2012, 6(20):493-500. (EI)
[9] Huajuan Huang, Shifei Ding. A Novel Granular Support Vector Machine Based on Mixed Kernel Function. International Journal of Digital Content Technology and its Applications, 2012, 6(20):484-492. (EI)
[10] Shifei Ding(Guest editorial). Special Issue: Advances in Information and Computers, Journal of Computers, 2012, 7(10):2351-2353.(EI)
[11] Shifei Ding(Guest editorial). Special Issue: Advances in Information and Networks. Journal of Networks, 2012, 7(7):1007-1008.(EI)
(被EI收錄, 收錄號:20123415368412)
[12] Shifei Ding(Guest editorial). Special Issue: Advances in Information and Networks. Journal of Software, 7(9):1923-1924. (EI)
[13] Shifei Ding, Zhentao Yu (Guest editorial). Special Issue: Advances in Computers and Electronics Engineering. Journal of Computers, 2012, 7(12):2851-2852. (EI)
[14]丁世飛, 朱紅, 許新征, 史忠植. 基於熵的模糊信息測度研究. 計算機學報, 2012.35(4):796-801(EI).
[15] 朱紅,丁世飛, 許新征. 基於改進屬性約簡的細粒度並行AP聚類演算法. 計算機研究與發展, 2012, 49(12):2638-2644 (EI)
[16] 許新征,丁世飛,史忠植,趙作鵬,朱紅.一種基於QPSO的脈沖耦合神經網路參數的自適應確定方法. 模式識別與人工智慧, 2012,25(6): 909-915(EI)
[17] 馬剛,丁世飛, 史忠植. 基於極速學習的粗糙RBF神經網路. 微電子學與計算機, 2012, 29(8):9-14.
2011年
[1]Shifei Ding, Weikuan Jia, Chunyang Su, et al. Research of Neural Network Algorithm Based on Factor Analysis and Cluster Analysis. Neural Computing and Applications, 2011, 20(2): 297-302 (SCI,EI).
[2]Shifei Ding, Chunyang Su, Junzhao Yu. An Optimizing BP Neural Network Algorithm Based on Genetic Algorithm. Artificial Intelligence Review, 2011, 36Algorithm. Artificial Intelligence Review, 2011, 36(2): 153-162 (SCI, EI).
[3]Shifei Ding, Weikuan Jia, Chunyang Su, et al. Research of Neural Network Algorithm Based on Factor Analysis and Cluster Analysis. Neural Computing and Applications, 2011, 20(2): 297-302 (SCI, EI).
[4]Shifei Ding, Chunyang Su, Junzhao Yu. An Optimizing BP Neural Network Algorithm Based on Genetic Algorithm. Artificial Intelligence Review, 2011, 36(2): 153-162 (SCI, EI).
[5]Ding Shifei, Qian Jun, Xu Li, Zhao Xiangwei, Jin Fengxiang. A Clustering Algorithm Based on Information Visualization. International Journal of Digital Content Technology and its Applications, 2011, 5(1): 26-31 (EI).
[6]Shifei Ding, Yu Zhang, Li Xu, Jun Qian. A Feature Selection Algorithm Based on Tolerant Granule. Journal of Convergence Information Technology, 2011, 6(1): 191-195 (EI).
[7]Ding Shifei, Li Jianying, Xu Li, Qian Jun. Research Progress of Granular Computing (GrC). International Journal of Digital Content Technology and its Applications, 2011, 5(1): 162-172 (EI).
[8]Ding Shifei, Qian Jun, Xu Li, Zhao Xiangwei, Jin Fengxiang. A Clustering Algorithm Based on Information Visualization.International Journal of Digital Content Technology and its Applications, 2011, 5(1): 26-31 (EI).
[9]Shifei Ding, Yu Zhang, Li Xu, Jun Qian. A Feature Selection Algorithm Based on Tolerant Granule. Journal of Convergence Information Technology, 2011, 6(1): 191-195 (EI).
[10]Ding Shifei, Li Jianying, Xu Li, Qian Jun. Research Progress of Granular Computing (GrC). International Journal of Digital Content Technology and its Applications, 2011, 5(1): 162-172 (EI).
[11]Shifei DING, Jinrong CHEN, Xinzheng XU, Jianying LI. Rough Neural Networks: A review. Journal of Computational Information Systems, 2011, 7(7): 2338-2346(EI).
[12]Shifei Ding, Xinzheng Xu, Hong Zhu. Studies on Optimization Algorithms for Some Artificial Neural Networks Based on Genetic Algorithm (GA). Journal of Computers, 2011, 6 (5):939-946 (EI).
[13]Shifei DING, Yaxiang GU. A Fuzzy Support Vector Machine Algorithm with Dual Membership Based on Hypersphere. Journal of Computational Information Systems, 2011, 7(6): 2028-2034 (EI).
[14]丁世飛, 齊丙娟, 譚紅艷. 支持向量機理論與演算法研究綜述. 電子科技大學學報,2011, 40(1): 2-10 (EI).
[15] 賈偉寬, 丁世飛, 許新征, 蘇春陽, 史忠植. 基於Shannon熵的因子特徵提取演算法研究. 模式識別與人工智慧, 2011, 24(3): 327-331 (EI).
2010年以前
[1] Shifei Ding, Weikuian Jia, Xinzheng Xu, et al. Neural Networks Algorithm Based on Factor Analysis. Lecture Notes in Computer Science, Vol.6063/2010, pp.319-324 (EI).
[2] Shifei Ding, Weikuan Jia, Chunyang Su, et al. An improved BP Neural Netwok Algorithm Based on Factor Analysis. Journal of Convergence Information Technology, 2010, 5(4): 103-108 (EI).
[3] Shifei Ding, Li Xu, Hong Zhu, Liwen Zhang. Research and Progress of Cluster Algorithms based on Granular Computing. International Journal of Digital Content Technology and its Applications, 2010, 4(5): 96-104 (EI).
[4] Shifei Ding, Li Xu, Chunyang Su, Hong Zhu. Using Genetic Algorithms to Optimize Artificial Neural Networks, Journal of Convergence Information Technology, 2010, 5(8): 54-62 (EI).
[5] Shifei Ding, Yongping Zhang, Xiaofeng Lei et al. Research on a principal components decision algorithm based on information entropy. Journal of Information Science, 2009, 35(1):120-127 (SCI, EI).
[6]Shifei Ding, Chunyang Su, Weikuan Jia, Fengxiang Jin, Zhong Shi. Several Progress of Semi-Supervised Learning. Journal of Information & Computational Science, 2009, 6(1): 211-217 (EI).
[7] Shi-Fei Ding, Shi-Xiong Xia, Feng-Xiang Jin, Zhong-Zhi Shi. Novel Fuzzy Information Proximity Measures. Journal of Information Science, 2007, 33 (6):678-685 (SCI, EI).
[8] Ding Shifei, Shi Zhong. Supervised Feature Extraction Algorithm Based on Improved Polynomial Entropy. Journal of Information Science, 32(4): 309-315,2006.8 (SCI, EI)
[9] Ding Shifei, Shi Zhong. Studies on Incidence Pattern Recognition Based on Information Entropy. Journal of Information Science, 31(6):497-502,2005.12 (SCI, EI).
[10] Ding Shifei, Jin Fengxiang. Information characteristics of discrete K-L transform based on information entropy. Transactions Nonferrous Metals Society of China, 2003.6(SCI ,EI).
[11] Shifei Ding, Zhong Shi, Xiaoying Wang. Symmetric Cross Entropy and Information Feature Compression Algorithm. Journal of Computational Information Systems, 1(2): 247-252 , 2005.6 (EI).
[12] Ding Shifei, Shi Zhong. Studies on Information Clustering Algorithm Based on MID. Chinese Journal of Electronics, Vol.15 No.4A, pp.918-920, 2006 (SCI, EI).
[13] Ding Shifei, Shi Zhong. Divergence-based Supervised Information Feature Compression Algorithm.Lecture Notes in Computer Science, Vol. 3971/2006, pp. 1421-1426(SCI, EI).
[14] Shifei Ding, Zhong Shi. A Novel Supervised Information Feature Compression Algorithm. Lecture Notes in Computer Science, Vol. 3991/2006, pp. 777-780 (SCI, EI).
[15] Shifei Ding, Zhong Shi, Yuncheng Wang,and Fengxiang Jin. Optimization Feature Compression and FNN Realization. Lecture Notes in Control and Information Science, Vol. 344/2006, pp. 951-956(SCI, EI).
[16] Shifei Ding, Zhong Shi, and Fengxiang Jin. Supervised Feature Extraction Algorithm Based on Continuous Divergence Criterion. Lecture Notes in Artificial Inteligence, Vol. 4114/2006, pp.268-277 (SCI, EI).
[17] 丁世飛, 賈偉寬, 許新征, 蘇春陽. 基於PLS的Elman神經網路演算法研究. 電子學報, 2010, 38(2A): 71-75 (EI).
[18] 許新征, 丁世飛, 史忠植, 賈偉寬. 圖像分割的新理論何新方法. 電子學報, 2010, 38(2A): 76-82(EI).
[19] 丁世飛,靳奉祥. Fuzzy-Grey信息集成模式識別演算法的研究. 計算機輔助設計與圖形學學報, 2004, 16(3):275-278 (EI).
[20] 丁世飛,靳奉祥,史忠植. 基於PLS的信息特徵壓縮演算法. 計算機輔助設計與圖形學學報, 2005, 17(2):368-371 (EI).
[21] 丁世飛,史忠植. 基於廣義距離的直接聚類演算法研究.計算機研究與發展,2007, 44(4): 674-679(EI).
[22] 丁世飛,黃華娟. 加權光滑CHKS孿生支持向量機. 軟體學報, 2013, 24(11):2548-2557(EI).
丁世飛,獲獎情況
1. 2007年獲全國優秀博士學位論文提名獎
2. 2006年獲山東省優秀博士學位論文獎
3. 2007年獲山東高等學校優秀科研成果二等獎,第1位
4. 2006年獲中國科學院計算技術研究所優秀博士後出站報告
4. 2004年獲山東高等學校優秀科研成果二等獎,第1位
5. 2001年獲山東省省級教學成果三等獎,第4位
④ 什麼是股指點數
股票點數,即股票價格指數,是運用統計學中的指數方法編制而成的,反映股市中總體價格或某類股價變動和走勢的指標。
股票點數即股票價格指數。是由證券交易所或金融服務機構編制的表明股票行市變動的一種供參考的指示數字。由於股票價格起伏無常,投資者必然面臨市場價格風險。對於具體某一種股票的價格變化,投資者容易了解,而對於多種股票的價格變化,要逐一了解,既不容易,也不勝其煩。為了適應這種情況和需要,一些金融服務機構就利用自己的業務知識和熟悉市場的優勢,編制出股票價格指數,公開發布,作為市場價格變動的指標。投資者據此就可以檢驗自己投資的效果,並用以預測股票市場的動向。同時,新聞界、公司老闆乃至政界領導人等也以此為參考指標,來觀察、預測社會政治、經濟發展形勢。
這種股票指數,也就是表明股票行市變動情況的價格平均數。編制股票指數,通常以某年某月為基礎,以這個基期的股票價格作為100, 用以後各時期的股票價格和基期價格比較,計算出升降的百分比,就是該時期的股票指數。投資者根據指數的升降,可以判斷出股票價格的變動趨勢。並且為了能實時的向投資者反映股市的動向,所有的股市幾乎都是在股價變化的同時即時公布股票價格指數。
根據股價指數反映的價格走勢所涵蓋的范圍,一般將股票價格指數劃分為成份指數、綜合指數和分類指數。成份指數既可以反映市場的整體走勢,也可以作為衡量投資業績的標尺,作為一個市場的基準投資組合而反映市場的基本回報,具有可投資性,一般可以作為指數基金的標的。上證綜合指數是上海證券交易所編制的,以上海證券交易所掛牌的全部股票為計算范圍,以發行量為權數的加權綜合股價指數。該指數以1990年12月19日為基準日, 基日指數定為100點,自1991年7月15日開始發布。該指數反映上海證券交易所上市的全部A股和全部B股的股價走勢。其計算方法與深綜合指數大體相同,不同之處在於對新股的處理。