導航:首頁 > 源碼編譯 > dijkstra演算法視頻

dijkstra演算法視頻

發布時間:2023-09-08 03:37:24

A. 圖遍歷演算法之最短路徑Dijkstra演算法

最短路徑問題是圖論研究中一個經典演算法問題,旨在尋找圖中兩節點或單個節點到其他節點之間的最短路徑。根據問題的不同,演算法的具體形式包括:

常用的最短路徑演算法包括:Dijkstra演算法,A 演算法,Bellman-Ford演算法,SPFA演算法(Bellman-Ford演算法的改進版本),Floyd-Warshall演算法,Johnson演算法以及Bi-direction BFS演算法。本文將重點介紹Dijkstra演算法的原理以及實現。

Dijkstra演算法,翻譯作戴克斯特拉演算法或迪傑斯特拉演算法,於1956年由荷蘭計算機科學家艾茲赫爾.戴克斯特拉提出,用於解決賦權有向圖的 單源最短路徑問題 。所謂單源最短路徑問題是指確定起點,尋找該節點到圖中任意節點的最短路徑,演算法可用於尋找兩個城市中的最短路徑或是解決著名的旅行商問題。

問題描述 :在無向圖 中, 為圖節點的集合, 為節點之間連線邊的集合。假設每條邊 的權重為 ,找到由頂點 到其餘各個節點的最短路徑(單源最短路徑)。

為帶權無向圖,圖中頂點 分為兩組,第一組為已求出最短路徑的頂點集合(用 表示)。初始時 只有源點,當求得一條最短路徑時,便將新增頂點添加進 ,直到所有頂點加入 中,演算法結束。第二組為未確定最短路徑頂點集合(用 表示),隨著 中頂點增加, 中頂點逐漸減少。

以下圖為例,對Dijkstra演算法的工作流程進行演示(以頂點 為起點):

註:
01) 是已計算出最短路徑的頂點集合;
02) 是未計算出最短路徑的頂點集合;
03) 表示頂點 到頂點 的最短距離為3
第1步 :選取頂點 添加進


第2步 :選取頂點 添加進 ,更新 中頂點最短距離




第3步 :選取頂點 添加進 ,更新 中頂點最短距離




第4步 :選取頂點 添加進 ,更新 中頂點最短距離





第5步 :選取頂點 添加進 ,更新 中頂點最短距離



第6步 :選取頂點 添加進 ,更新 中頂點最短距離



第7步 :選取頂點 添加進 ,更新 中頂點最短距離

示例:node編號1-7分別代表A,B,C,D,E,F,G

(s.paths <- shortest.paths(g, algorithm = "dijkstra"))輸出結果:

(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))輸出結果:

示例:

找到D(4)到G(7)的最短路徑:

[1] 維基網路,最短路徑問題: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra演算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/

B. dijkstra演算法是什麼

Dijkstra演算法是由荷蘭計算機科學家狄克斯特拉(Dijkstra)於1959年提出的,因此又叫狄克斯特拉演算法。是從一個頂點到其餘各頂點的最短路徑演算法,解決的是有向圖中最短路徑問題。

其基本原理是:每次新擴展一個距離最短的點,更新與其相鄰的點的距離。當所有邊權都為正時,由於不會存在一個距離更短的沒擴展過的點,所以這個點的距離永遠不會再被改變,因而保證了演算法的正確性。

不過根據這個原理,用Dijkstra求最短路的圖不能有負權邊,因為擴展到負權邊的時候會產生更短的距離,有可能就破壞了已經更新的點距離不會改變的性質。

舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離。Dijkstra演算法可以用來找到兩個城市之間的最短路徑。

Dijkstra演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E所有邊的集合,而邊的權重則由權重函數w: E→[0,∞]定義。

因此,w(u,v)就是從頂點u到頂點v的非負花費值(cost)。邊的花費可以想像成兩個頂點之間的距離。任兩點間路徑的花費值,就是該路徑上所有邊的花費值總和。

已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低花費路徑(i.e.最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。

C. 最短路徑演算法(Dijkstra)

Dijkstra( 迪科斯特拉 )演算法是用來解決核激唯單源最短路徑的演算法,要求路徑權值非負數。該演算法利用了深度優先搜索和貪心的演算法。

下面是一個有權圖,求從A到各個節點的最短路徑。

第1步:從A點出發,判斷每個點到A點的路徑(如果該點不能直連A點則距離值為無窮大,如果該點能和A直連則是當前的權值),計算完之後把A點上色,結果如下圖:

第2步:從除A點之外的點查找到距離A點最近的點C,從C點出發查找其鄰近的節點(除去已上色的點),並重新計算C點的鄰近點距離A點的值,如圖中B點,若新值(C點到A點的值+C點到該點的路徑)小於原值,則將值更新為5,同理更新D、E點。同時將C標鉛陵記為已經處理過,如圖所示塗色。

第3步:從上色的節點中查找距離A最近的B點,重復第3步操作。

第4步: 重復第3步,改培2步,直到所有的節點都上色。

最後就算出了從A點到所有點的最短距離。

leetcode 743題

D. Dijkstra演算法

Dijkstra(迪傑斯特拉)演算法是典型的單源最短路徑演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。注意該演算法要求圖中不存在負權邊。

設G=(V,E)是一個帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中只有一個源點,以後每求得一條最短路徑 , 就將加入到集合S中,直到全部頂點都加入到S中,演算法就結束了),第二組為其餘未確定最短路徑的頂點集合(用U表示),按最短路徑長度的遞增次序依次把第二組的頂點加入S中。在加入的過程中,總保持從源點v到S中各頂點的最短路徑長度不大於從源點v到U中任何頂點的最短路徑長度含侍仿。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。

(1)初始時,S只包含起點D;U包含除D外的其他頂點,且U中頂點的距離為「起點D到該頂點的距離」(例如,U中頂點A的距離為[D,A]的長度,然後D和A不相鄰,則談棗A的距離為∞)
(2)從U中選出「距離最短的頂點K」,並將頂點K加入到S中;同時,從U中移除頂點K
(3)更新U中各個頂點到起點D的距離。之所以更新U中頂點的距離,是由於上一步談纖中確定了K是求出最短路徑的頂點,從而可以利用K來更新其他頂點到起點D的距離(例如,[D,A]的距離可能大於[D,K]+[K,A]的距離)
(4)重復步驟(2)和(3),直到遍歷完所有頂點

https://blog.csdn.net/yalishadaa/article/details/55827681

E. 最短路徑的Dijkstra演算法

Dijkstra演算法(迪傑斯特拉)是典型的最短路徑路由演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法能得出最短路徑的最優解,但由於它遍歷計算的節點很多,所以效率低。可以用堆優化。
Dijkstra演算法是很有代表性的最短路演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。
Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表方式,Drew為了和下面要介紹的 A* 演算法和 D* 演算法表述一致,這里均採用OPEN,CLOSE表的方式。
其採用的是貪心法的演算法策略
大概過程:
創建兩個表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
1. 訪問路網中距離起始點最近且沒有被檢查過的點,把這個點放入OPEN組中等待檢查。
2. 從OPEN表中找出距起始點最近的點,找出這個點的所有子節點,把這個點放到CLOSE表中。
3. 遍歷考察這個點的子節點。求出這些子節點距起始點的距離值,放子節點到OPEN表中。
4. 重復第2和第3步,直到OPEN表為空,或找到目標點。 #include<iostream>#include<vector>usingnamespacestd;voiddijkstra(constint&beg,//出發點constvector<vector<int>>&adjmap,//鄰接矩陣,通過傳引用避免拷貝vector<int>&dist,//出發點到各點的最短路徑長度vector<int>&path)//路徑上到達該點的前一個點//負邊被認作不聯通//福利:這個函數沒有用任何全局量,可以直接復制!{constint&NODE=adjmap.size();//用鄰接矩陣的大小傳遞頂點個數,減少參數傳遞dist.assign(NODE,-1);//初始化距離為未知path.assign(NODE,-1);//初始化路徑為未知vector<bool>flag(NODE,0);//標志數組,判斷是否處理過dist[beg]=0;//出發點到自身路徑長度為0while(1){intv=-1;//初始化為未知for(inti=0;i!=NODE;++i)if(!flag[i]&&dist[i]>=0)//尋找未被處理過且if(v<0||dist[i]<dist[v])//距離最小的點v=i;if(v<0)return;//所有聯通的點都被處理過flag[v]=1;//標記for(inti=0;i!=NODE;++i)if(adjmap[v][i]>=0)//有聯通路徑且if(dist[i]<0||dist[v]+adjmap[v][i]<dist[i])//不滿足三角不等式{dist[i]=dist[v]+adjmap[v][i];//更新path[i]=v;//記錄路徑}}}intmain(){intn_num,e_num,beg;//含義見下cout<<輸入點數、邊數、出發點:;cin>>n_num>>e_num>>beg;vector<vector<int>>adjmap(n_num,vector<int>(n_num,-1));//默認初始化鄰接矩陣for(inti=0,p,q;i!=e_num;++i){cout<<輸入第<<i+1<<條邊的起點、終點、長度(負值代表不聯通):;cin>>p>>q;cin>>adjmap[p][q];}vector<int>dist,path;//用於接收最短路徑長度及路徑各點dijkstra(beg,adjmap,dist,path);for(inti=0;i!=n_num;++i){cout<<beg<<到<<i<<的最短距離為<<dist[i]<<,反向列印路徑:;for(intw=i;path[w]>=0;w=path[w])cout<<w<<<-;cout<<beg<<' ';}}

F. 最短路徑 | 深入淺出Dijkstra演算法(一)

上次我們介紹了神奇的只有 五行的 Floyd-Warshall 最短路演算法 ,它可以方便的求得 任意兩點的最短路徑, 這稱為 「多源最短路」。

這次來介紹 指定一個點(源點)到其餘各個頂點的最短路徑, 也叫做 「單源最短路徑」。 例如求下圖中的 1 號頂點到 2、3、4、5、6 號頂點的最短路徑。

與 Floyd-Warshall 演算法一樣,這里仍然 使用二維數組 e 來存儲頂點之間邊的關系, 初始值如下。

我們還需要用 一個一維數組 dis 來存儲 1 號頂點到其餘各個頂點的初始路程, 我們可以稱 dis 數組為 「距離表」, 如下。

我們將此時 dis 數組中的值稱為 最短路的「估計值」。

既然是 求 1 號頂點到其餘各個頂點的最短路程, 那就 先找一個離 1 號頂點最近的頂點。

通過數組 dis 可知當前離 1 號頂點最近是 2 號頂點。 當選擇了 2 號頂點後,dis[2]的值就已經從「估計值」變為了「確定值」, 即 1 號頂點到 2 號頂點的最短路程就是當前 dis[2]值。

為什麼呢?你想啊, 目前離 1 號頂點最近的是 2 號頂點,並且這個圖所有的邊都是正數,那麼肯定不可能通過第三個頂點中轉,使得 1 號頂點到 2 號頂點的路程進一步縮短了。 因此 1 號頂點到其它頂點的路程肯定沒有 1 號到 2 號頂點短,對吧 O(∩_∩)O~

既然選了 2 號頂點,接下來再來看 2 號頂點 有哪些 出邊 呢。有 2->3 和 2->4 這兩條邊。

先討論 通過 2->3 這條邊能否讓 1 號頂點到 3 號頂點的路程變短。 也就是說現在來比較 dis[3] dis[2]+e[2][3] 的大小。其中 dis[3]表示 1 號頂點到 3 號頂點的路程,dis[2]+e[2][3]中 dis[2]表示 1 號頂點到 2 號頂點的路程,e[2][3]表示 2->3 這條邊。所以 dis[2]+e[2][3]就表示從 1 號頂點先到 2 號頂點,再通過 2->3 這條邊,到達 3 號頂點的路程。

我們發現 dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此 dis[3]要更新為 10。這個過程有個專業術語叫做 「鬆弛」 。即 1 號頂點到 3 號頂點的路程即 dis[3],通過 2->3 這條邊 鬆弛成功。 這便是 Dijkstra 演算法的主要思想: 通過 「邊」 來鬆弛 1 號頂點到其餘各個頂點的路程。

同理通過 2->4(e[2][4]),可以將 dis[4]的值從 ∞ 鬆弛為 4(dis[4]初始為 ∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此 dis[4]要更新為 4)。

剛才我們對 2 號頂點所有的出邊進行了鬆弛。鬆弛完畢之後 dis 數組為:

接下來,繼續在剩下的 3、4、5 和 6 號頂點中,選出離 1 號頂點最近的頂點。通過上面更新過 dis 數組,當前離 1 號頂點最近是 4 號頂點。此時,dis[4]的值已經從「估計值」變為了「確定值」。下面繼續對 4 號頂點的所有出邊(4->3,4->5 和 4->6)用剛才的方法進行鬆弛。鬆弛完畢之後 dis 數組為:

繼續在剩下的 3、5 和 6 號頂點中,選出離 1 號頂點最近的頂點,這次選擇 3 號頂點。此時,dis[3]的值已經從「估計值」變為了「確定值」。對 3 號頂點的所有出邊(3->5)進行鬆弛。鬆弛完畢之後 dis 數組為:

繼續在剩下的 5 和 6 號頂點中,選出離 1 號頂點最近的頂點,這次選擇 5 號頂點。此時,dis[5]的值已經從「估計值」變為了「確定值」。對5號頂點的所有出邊(5->4)進行鬆弛。鬆弛完畢之後 dis 數組為:

最後對 6 號頂點的所有出邊進行鬆弛。因為這個例子中 6 號頂點沒有出邊,因此不用處理。 到此,dis 數組中所有的值都已經從「估計值」變為了「確定值」。

最終 dis 數組如下,這便是 1 號頂點到其餘各個頂點的最短路徑。

OK,現在來總結一下剛才的演算法。 Dijkstra演算法的基本思想是:每次找到離源點(上面例子的源點就是 1 號頂點)最近的一個頂點,然後以該頂點為中心進行擴展,最終得到源點到其餘所有點的最短路徑。

基本步驟如下:

在 博客 中看到兩個比較有趣的問題,也是在學習Dijkstra時,可能會有疑問的問題。

當我們看到上面這個圖的時候,憑借多年對平面幾何的學習,會發現在「三角形ABC」中,滿足不了 構成三角形的條件(任意兩邊之和大於第三邊)。 納尼,那為什麼圖中能那樣子畫?

還是「三角形ABC」,以A為起點,B為終點,如果按照平面幾何的知識, 「兩點之間線段最短」, 那麼,A到B的最短距離就應該是6(線段AB),但是,實際上A到B的最短距離卻是3+2=5。這又怎麼解釋?

其實,之所以會有上面的疑問,是因為 對邊的權值和邊的長度這兩個概念的混淆, 。之所以這樣畫,也只是為了方便理解(每個人寫草稿的方式不同,你完全可以用別的方式表示,只要便於你理解即可)。

PS:數組實現鄰接表可能較難理解,可以看一下 這里

參考資料:

Dijkstra演算法是一種基於貪心策略的演算法。每次新擴展一個路程最短的點,更新與其相鄰的點的路程。當所有邊權都為正時,由於不會存在一個路程更短的沒擴展過的點,所以這個點的路程永遠不會再被改變,因而保證了演算法的正確性。

根據這個原理, 用Dijkstra演算法求最短路徑的圖不能有負權邊, 因為擴展到負權邊的時候會產生更短的路徑,有可能破壞了已經更新的點路徑不會發生改變的性質。

那麼,有沒有可以求帶負權邊的指定頂點到其餘各個頂點的最短路徑演算法(即「單源最短路徑」問題)呢?答案是有的, Bellman-Ford演算法 就是一種。(我們已經知道了 Floyd-Warshall 可以解決「多源最短路」問題,也要求圖的邊權均為正)

通過 鄰接矩陣 的Dijkstra時間復雜度是 。其中每次找到離 1 號頂點最近的頂點的時間復雜度是 O(N),這里我們可以用 優先隊列(堆) 來優化,使得這一部分的時間復雜度降低到 。這個我們將在後面討論。

G. 簡談迪克斯特拉演算法

一直想要學點簡單的演算法,叨叨了好久,開始吧【這篇文章的前言無非就是我想說點廢話,大家可以選擇性的過濾哈。】

迪傑斯特拉演算法(Dijkstra)是由荷蘭計算機科學家 狄克斯特拉 於1959 年提出的,因此又叫 狄克斯特拉演算法 。是從一個頂點到其餘各頂點的 最短路徑 演算法,解決的是有權圖中最短路徑問題。迪傑斯特拉演算法主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。

敲黑板~進入正題
迪傑斯特拉演算法是目前 OIER 們最愛用的最短路演算法,下面講一下這個演算法的思路【圖丑,請大家忍耐一下】:

第一步,我們先把a加入集合,數組變成(s = {a}, dis[] = {0, ∞,∞,∞,∞,∞,∞,∞})
第二步,找到和a最近的點,為b,把b加入集合,並確定他的最短路徑【要注意箭頭方向哈仿殲塌】,數組變成(s = {a, b}, dis[] ={0,2,∞,∞,∞,∞,∞,∞})
第三步,找到和b最近的點,為d,把d加入集合,並確定他的最短路徑【要注意箭頭方向】,數組變成(s = {a, b, d}, dis[] = {0,2,∞,3,∞,∞,∞,∞})
第四步,找到和d最近的點,為e,把e加入集合,並確定他的最短路徑【要注意箭頭方向】,數組變成(s = {a, b, d, e}, dis[] = {0,2,∞,3,5,∞,∞,∞改纖})
第五步,找到和e最近的點,為f,把f加入集合,並確定他的最短路徑【要注意箭頭方向】,數組變成(s = {a, b, d, e, f}, dis[] = {0,2,∞,3,5,9,∞,∞})
第六步,找到和f最近的點,為g,把g加入集合,並確定他的最短路徑【要注意箭頭方向】,數組變成(s = {a, b, d, e, f, g}, dis[] = {0,2,∞,3,5,9,12,∞})
第七步,目前只剩下c和h了,那麼我們先要找到距離集合路徑最短的c,把c加備圓入集合,並確定他的最短路徑,數組變成(s = {a, b, c, d, e, f, g}, dis[]= {0,2,13,3,5,9,12,∞})
第八步,最後一步,我們找到距離集合路徑最短的h,把h加入集合,並確定他的最短路徑,數組變成(s = {a, b, c, d, e, f, g, h}, dis[] = {0,2,13,3,5,9,12,18})
得嘞,這個大致的思路是這樣的,還有後續喲,欲知後事如何,請看下回講解~

閱讀全文

與dijkstra演算法視頻相關的資料

熱點內容
小奔運動app網路異常怎麼回事 瀏覽:447
php開啟壓縮 瀏覽:303
伺服器主機如何設置啟動 瀏覽:282
linux配置網路命令 瀏覽:774
一張照片怎麼製作視頻app 瀏覽:908
pythonweb和php 瀏覽:976
電腦伺服器地址ip地址 瀏覽:823
對矩陣壓縮是為了 瀏覽:910
setfacl命令 瀏覽:172
linux子系統中斷 瀏覽:342
linux查看進程ps 瀏覽:224
知識庫系統php 瀏覽:623
小波變換壓縮圖像python 瀏覽:151
阿里巴巴程序員怎麼月入百萬 瀏覽:173
如何使用國外伺服器 瀏覽:188
燃燈者pdf 瀏覽:468
編譯器用數學嗎 瀏覽:7
圖形化apk反編譯工具 瀏覽:48
考勤表加密怎麼辦 瀏覽:735
arj壓縮與解壓批處理怎麼寫 瀏覽:658