導航:首頁 > 源碼編譯 > 如何查看系統的交叉編譯器

如何查看系統的交叉編譯器

發布時間:2023-09-10 02:52:26

『壹』 怎麼查linux的交叉工具鏈版本

如果交叉編譯工具鏈的路徑已經添加到path變數中的話,直接使用... -v即可查看
比如我的是arm-linux-gnueabihf-g++
那麼直接arm-linux-gnueabihf-g++ -v或者是--version就可以得到版本信息了。

『貳』 ARM linux 板 如何查看交叉編譯器

一般它只燒了個內核鏡像,沒辦法看

有必要看么,都差不多的,現在一般用gcc4.3/4.4比較多,個別的還在用3.X

『叄』 如何使用arm-linux-gcc交叉編譯器生成map文件

方法/步驟

從網上下載arm-linux-gcc 4.4.3的源碼
進入Linux的終端,將當前目錄設為arm-linux-gcc的下載目錄,輸入tar -xzf arm-linux-gcc-4.4.3.tar.gz,將文件解壓,解壓後會有一個opt的文件夾

在/usr/local/下建立一個名為arm的文件夾,在終端中輸入命令:cd /usr/local/,回車,然後再輸入命令:mkdir arm,建立arm目錄,並修改該文件夾的屬性為rwx,輸入命令:chmod 777 arm

將之前解壓得到的opt文件壓下的源碼,復制到上一步中創建的arm文件夾下,在終端中輸入命令:sudo cp -r /opt/FriendlyARM/toolschain/4.4.3 /usr/local/arm

到這里已經基本安裝好了,到為了避免每次使用arm-linux-gcc時都要輸入它所在的完整路徑,所以這里我們要修改一下環境變數$PATH。在終端中輸入:sudo gedit /etc/profile,打開profile文件,在最後一行加上「export PATH=$PATH:/usr/local/arm/4.4.3/bin」然後保存文件。

立即使新的環境變數生效,輸入:source /etc/profile。再輸入:echo $PATH查看環境變數,如圖。如果不成功,則直接重新啟動系統,再查看。因為之前我已經安裝過了,為了演示,所以圖中會有兩個/usr/local/arm/4.4.3/bin。

最後檢查是否安裝完成,輸入:arm-linux-gcc -v查看版本信息,如果出現以下信息,則說明安裝成功。

『肆』 怎麼查看Linux下系統的內核,交叉編譯,文件系統的版本

一般交叉編譯器里都有一個lib的文件夾的,把你的lib文件cp到這里應該就可以了。也可以用gcc帶的-l,例如:arm-linuc-gcc
-l/root/lib
xx.c
-o
xx.o

『伍』 如何查看linux已安裝的編譯器及其版本

gcc -v、rpm -qa glibc、rpm -qa zlib。
FC6可以用這些命令,rpm -qa gcc glibc zlib。

補充:Linux是一套免費使用和自由傳播的類Unix操作系統,是一個基於POSIX和UNIX的多用戶、多任務、支持多線程和多CPU的操作系統。它能運行主要的UNIX工具軟體、應用程序和網路協議。它支持32位和64位硬體。Linux繼承了Unix以網路為核心的設計思想,是一個性能穩定的多用戶網路操作系統。

Linux操作系統誕生於1991 年10 月5 日(這是第一次正式向外公布時間)。Linux存在著許多不同的Linux版本,但它們都使用了Linux內核。Linux可安裝在各種計算機硬體設備中,比如手機、平板電腦、路由器、視頻游戲控制台、台式計算機、大型機和超級計算機。

嚴格來講,Linux這個詞本身只表示Linux內核,但實際上人們已經習慣了用Linux來形容整個基於Linux內核,並且使用GNU 工程各種工具和資料庫的操作系統。

『陸』 keil的C語言編譯器是不是GCC,怎麼查看

不是,keil的編譯器是交叉編譯器,是和晶元相關的,你創建過程的時候選擇的晶元,其實就有編譯器(當然還有其它的東西),所以有的晶元keil上沒有還需要安裝額外的包才行。

『柒』 虛擬機ubuntu14.04怎麼安裝交叉編譯器

虛擬機ubuntu14.04怎麼安裝交叉編譯器,解答如下

『捌』 在linux中安裝交叉編譯器時的解包問題

具體操作步驟如下:
1. 下載
在GCC網站上( 3.3.1。可供下載的文件一般有兩種形式:gcc-3.3.1.tar.gz和 2,只是壓縮格式不一樣,內容完全一致,下載其中一種即可。
2. 解壓縮
根據壓縮格式,選擇下面相應的一種方式解包(以下的「%」表示命令行提示符):
% tar xzvf gcc-3.3.1.tar.gz
或者
% tar jxvf 2
新生成的gcc-3.3.1這個目錄被稱為源目錄,用${srcdir}表示它。以後在出現${srcdir}的地方,應該用真實的路徑來替換它。用pwd命令可以查看當前路徑。
在${srcdir}/INSTALL目錄下有詳細的GCC安裝說明,可用瀏覽器打開 ml閱讀。
3. 建立目標目錄
目標目錄(用${objdir}表示)是用來存放編譯結果的地方。GCC建議編譯後的文件不要放在源目錄${srcdir]中(雖然這樣做也可以),最好單獨存放在另外一個目錄中,而且不能是${srcdir}的子目錄。
例如,可以這樣建立一個叫 gcc-build 的目標目錄(與源目錄${srcdir}是同級目錄):

% mkdir gcc-build
% cd gcc-build
以下的操作主要是在目標目錄 ${objdir} 下進行。
4. 配置
配置的目的是決定將GCC編譯器安裝到什麼地方(${destdir}),支持什麼語言以及指定其它一些選項等。其中,${destdir}不能與${objdir}或${srcdir}目錄相同。
配置是通過執行${srcdir}下的configure來完成的。其命令格式為(記得用你的真實路徑替換${destdir}):
% ${srcdir}/configure --prefix=${destdir} [其它選項]
例如,如果想將GCC 3.3.1安裝到/usr/local/gcc-3.3.1目錄下,則${destdir}就表示這個路徑。
% ../gcc-3.3.1/configure --prefix=/usr/local/gcc-3.3.1 --enable-threads=posix --disable-checking --enable--long-long --host=i386-redhat-linux --with-system-zlib --enable-languages=c,c++,java
將GCC安裝在/usr/local/gcc-3.3.1目錄下,支持C/C++和JAVA語言,其它選項參見GCC提供的幫助說明。
5. 編譯
% make
這是一個漫長的過程。

6. 安裝
執行下面的命令將編譯好的庫文件等拷貝到${destdir}目錄中(根據你設定的路徑,可能需要管理員的許可權):
% make install
至此,GCC 3.3.1安裝過程就完成了。
6. 其它設置
GCC 3.3.1的所有文件,包括命令文件(如gcc、g++)、庫文件等都在${destdir}目錄下分別存放,如命令文件放在bin目錄下、庫文件在lib下、頭文件在include下等。由於命令文件和庫文件所在的目錄還沒有包含在相應的搜索路徑內,所以必須要作適當的設置之後編譯器才能順利地找到並使用它們。
6.1 gcc、g++、gcj的設置
要想使用GCC 3.3.1的gcc等命令,簡單的方法就是把它的路徑${destdir}/bin放在環境變數PATH中。我不用這種方式,而是用符號連接的方式實現,這樣做的好處是我仍然可以使用系統上原來的舊版本的GCC編譯器。
首先,查看原來的gcc所在的路徑:
% which gcc
在系統上,上述命令顯示:/usr/bin/gcc。因此,原來的gcc命令在/usr/bin目錄下。可以把GCC 3.3.1中的gcc、g++、gcj等命令在/usr/bin目錄下分別做一個符號連接:
% cd /usr/bin
% ln -s ${destdir}/bin/gcc gcc33
% ln -s ${destdir}/bin/g++ g++33
% ln -s ${destdir}/bin/gcj gcj33
這樣,就可以分別使用gcc33、g++33、gcj33來調用GCC 3.3.0的gcc、g++、gcj完成對C、C++、JAVA程序的編譯了。同時,仍然能夠使用舊版本的GCC編譯器中的gcc、g++等命令。

『玖』 對那些公開源代碼的軟體或操作系統(如Linux)怎樣查看其源代碼(詳細步驟)

Linux內核的配置系統由三個部分組成,分別是:
Makefile:分布在 Linux 內核源代碼中的 Makefile,定義 Linux 內核的編譯規則;
配置文件(config.in):給用戶提供配置選擇的功能;
配置工具:包括配置命令解釋器(對配置腳本中使用的配置命令進行解釋)和配置用戶界面(提供基於字元界面、基於 Ncurses 圖形界面以及基於 Xwindows 圖形界面的用戶配置界面,各自對應於 Make config、Make menuconfig 和 make xconfig)。
這些配置工具都是使用腳本語言,如 Tcl/TK、Perl 編寫的(也包含一些用 C 編寫的代碼)。本文並不是對配置系統本身進行分析,而是介紹如何使用配置系統。所以,除非是配置系統的維護者,一般的內核開發者無須了解它們的原理,只需要知道如何編寫 Makefile 和配置文件就可以。所以,在本文中,我們只對 Makefile 和配置文件進行討論。另外,凡是涉及到與具體 CPU 體系結構相關的內容,我們都以 ARM 為例,這樣不僅可以將討論的問題明確化,而且對內容本身不產生影響。
2. Makefile
2.1 Makefile 概述
Makefile 的作用是根據配置的情況,構造出需要編譯的源文件列表,然後分別編譯,並把目標代碼鏈接到一起,最終形成 Linux 內核二進制文件。
由於 Linux 內核源代碼是按照樹形結構組織的,所以 Makefile 也被分布在目錄樹中。Linux 內核中的 Makefile 以及與 Makefile 直接相關的文件有:

Makefile:頂層 Makefile,是整個內核配置、編譯的總體控制文件。
.config:內核配置文件,包含由用戶選擇的配置選項,用來存放內核配置後的結果(如 make config)。
arch/*/Makefile:位於各種 CPU 體系目錄下的 Makefile,如 arch/arm/Makefile,是針對特定平台的 Makefile。
各個子目錄下的 Makefile:比如 drivers/Makefile,負責所在子目錄下源代碼的管理。
Rules.make:規則文件,被所有的 Makefile 使用。
用戶通過 make config 配置後,產生了 .config。頂層 Makefile 讀入 .config 中的配置選擇。頂層 Makefile 有兩個主要的任務:產生 vmlinux 文件和內核模塊(mole)。為了達到此目的,頂層 Makefile 遞歸的進入到內核的各個子目錄中,分別調用位於這些子目錄中的 Makefile。至於到底進入哪些子目錄,取決於內核的配置。在頂層 Makefile 中,有一句:include arch/$(ARCH)/Makefile,包含了特定 CPU 體系結構下的 Makefile,這個 Makefile 中包含了平台相關的信息。
位於各個子目錄下的 Makefile 同樣也根據 .config 給出的配置信息,構造出當前配置下需要的源文件列表,並在文件的最後有 include $(TOPDIR)/Rules.make。
Rules.make 文件起著非常重要的作用,它定義了所有 Makefile 共用的編譯規則。比如,如果需要將本目錄下所有的 c 程序編譯成匯編代碼,需要在 Makefile 中有以下的編譯規則:
%.s: %.c
$(CC) $(CFLAGS) -S $< -o $@

有很多子目錄下都有同樣的要求,就需要在各自的 Makefile 中包含此編譯規則,這會比較麻煩。而 Linux 內核中則把此類的編譯規則統一放置到 Rules.make 中,並在各自的 Makefile 中包含進了 Rules.make(include Rules.make),這樣就避免了在多個 Makefile 中重復同樣的規則。對於上面的例子,在 Rules.make 中對應的規則為:
%.s: %.c
$(CC) $(CFLAGS) $(EXTRA_CFLAGS) $(CFLAGS_$(*F)) $(CFLAGS_$@) -S $< -o $@

2.2 Makefile 中的變數
頂層 Makefile 定義並向環境中輸出了許多變數,為各個子目錄下的 Makefile 傳遞一些信息。有些變數,比如 SUBDIRS,不僅在頂層 Makefile 中定義並且賦初值,而且在 arch/*/Makefile 還作了擴充。
常用的變數有以下幾類:
1) 版本信息
版本信息有:VERSION,PATCHLEVEL, SUBLEVEL, EXTRAVERSION,KERNELRELEASE。版本信息定義了當前內核的版本,比如 VERSION=2,PATCHLEVEL=4,SUBLEVEL=18,EXATAVERSION=-rmk7,它們共同構成內核的發行版本KERNELRELEASE:2.4.18-rmk7
2) CPU 體系結構:ARCH
在頂層 Makefile 的開頭,用 ARCH 定義目標 CPU 的體系結構,比如 ARCH:=arm 等。許多子目錄的 Makefile 中,要根據 ARCH 的定義選擇編譯源文件的列表。
3) 路徑信息:TOPDIR, SUBDIRS
TOPDIR 定義了 Linux 內核源代碼所在的根目錄。例如,各個子目錄下的 Makefile 通過 $(TOPDIR)/Rules.make 就可以找到 Rules.make 的位置。
SUBDIRS 定義了一個目錄列表,在編譯內核或模塊時,頂層 Makefile 就是根據 SUBDIRS 來決定進入哪些子目錄。SUBDIRS 的值取決於內核的配置,在頂層 Makefile 中 SUBDIRS 賦值為 kernel drivers mm fs net ipc lib;根據內核的配置情況,在 arch/*/Makefile 中擴充了 SUBDIRS 的值,參見4)中的例子。
4) 內核組成信息:HEAD, CORE_FILES, NETWORKS, DRIVERS, LIBS
Linux 內核文件 vmlinux 是由以下規則產生的:
vmlinux: $(CONFIGURATION) init/main.o init/version.o linuxsubdirs
$(LD) $(LINKFLAGS) $(HEAD) init/main.o init/version.o
--start-group
$(CORE_FILES)
$(DRIVERS)
$(NETWORKS)
$(LIBS)
--end-group
-o vmlinux
可以看出,vmlinux 是由 HEAD、main.o、version.o、CORE_FILES、DRIVERS、NETWORKS 和 LIBS 組成的。這些變數(如 HEAD)都是用來定義連接生成 vmlinux 的目標文件和庫文件列表。其中,HEAD在arch/*/Makefile 中定義,用來確定被最先鏈接進 vmlinux 的文件列表。比如,對於 ARM 系列的 CPU,HEAD 定義為:
HEAD := arch/arm/kernel/head-$(PROCESSOR).o
arch/arm/kernel/init_task.o
表明 head-$(PROCESSOR).o 和 init_task.o 需要最先被鏈接到 vmlinux 中。PROCESSOR 為 armv 或 armo,取決於目標 CPU。 CORE_FILES,NETWORK,DRIVERS 和 LIBS 在頂層 Makefile 中定義,並且由 arch/*/Makefile 根據需要進行擴充。 CORE_FILES 對應著內核的核心文件,有 kernel/kernel.o,mm/mm.o,fs/fs.o,ipc/ipc.o,可以看出,這些是組成內核最為重要的文件。同時,arch/arm/Makefile 對 CORE_FILES 進行了擴充:
# arch/arm/Makefile
# If we have a machine-specific directory, then include it in the build.
MACHDIR := arch/arm/mach-$(MACHINE)
ifeq ($(MACHDIR),$(wildcard $(MACHDIR)))
SUBDIRS += $(MACHDIR)
CORE_FILES := $(MACHDIR)/$(MACHINE).o $(CORE_FILES)
endif
HEAD := arch/arm/kernel/head-$(PROCESSOR).o
arch/arm/kernel/init_task.o
SUBDIRS += arch/arm/kernel arch/arm/mm arch/arm/lib arch/arm/nwfpe
CORE_FILES := arch/arm/kernel/kernel.o arch/arm/mm/mm.o $(CORE_FILES)
LIBS := arch/arm/lib/lib.a $(LIBS)

5) 編譯信息:CPP, CC, AS, LD, AR,CFLAGS,LINKFLAGS
在 Rules.make 中定義的是編譯的通用規則,具體到特定的場合,需要明確給出編譯環境,編譯環境就是在以上的變數中定義的。針對交叉編譯的要求,定義了 CROSS_COMPILE。比如:
CROSS_COMPILE = arm-linux-
CC = $(CROSS_COMPILE)gcc
LD = $(CROSS_COMPILE)ld
......
CROSS_COMPILE 定義了交叉編譯器前綴 arm-linux-,表明所有的交叉編譯工具都是以 arm-linux- 開頭的,所以在各個交叉編譯器工具之前,都加入了 $(CROSS_COMPILE),以組成一個完整的交叉編譯工具文件名,比如 arm-linux-gcc。
CFLAGS 定義了傳遞給 C 編譯器的參數。
LINKFLAGS 是鏈接生成 vmlinux 時,由鏈接器使用的參數。LINKFLAGS 在 arm/*/Makefile 中定義,比如:
# arch/arm/Makefile
LINKFLAGS :=-p -X -T arch/arm/vmlinux.lds

6) 配置變數CONFIG_*
.config 文件中有許多的配置變數等式,用來說明用戶配置的結果。例如 CONFIG_MODULES=y 表明用戶選擇了 Linux 內核的模塊功能。
.config 被頂層 Makefile 包含後,就形成許多的配置變數,每個配置變數具有確定的值:y 表示本編譯選項對應的內核代碼被靜態編譯進 Linux 內核;m 表示本編譯選項對應的內核代碼被編譯成模塊;n 表示不選擇此編譯選項;如果根本就沒有選擇,那麼配置變數的值為空。
2.3 Rules.make 變數
前面講過,Rules.make 是編譯規則文件,所有的 Makefile 中都會包括 Rules.make。Rules.make 文件定義了許多變數,最為重要是那些編譯、鏈接列表變數。
O_OBJS,L_OBJS,OX_OBJS,LX_OBJS:本目錄下需要編譯進 Linux 內核 vmlinux 的目標文件列表,其中 OX_OBJS 和 LX_OBJS 中的 "X" 表明目標文件使用了 EXPORT_SYMBOL 輸出符號。
M_OBJS,MX_OBJS:本目錄下需要被編譯成可裝載模塊的目標文件列表。同樣,MX_OBJS 中的 "X" 表明目標文件使用了 EXPORT_SYMBOL 輸出符號。
O_TARGET,L_TARGET:每個子目錄下都有一個 O_TARGET 或 L_TARGET,Rules.make 首先從源代碼編譯生成 O_OBJS 和 OX_OBJS 中所有的目標文件,然後使用 $(LD) -r 把它們鏈接成一個 O_TARGET 或 L_TARGET。O_TARGET 以 .o 結尾,而 L_TARGET 以 .a 結尾。

閱讀全文

與如何查看系統的交叉編譯器相關的資料

熱點內容
php人像識別 瀏覽:169
mysqlphp緩存機制 瀏覽:207
量價王道指標附圖源碼 瀏覽:488
基於51單片機的指紋識別 瀏覽:803
oppoa系列怎麼解壓 瀏覽:603
程序員辭職養豬還值得學編程嗎 瀏覽:866
socket網路編程pdf 瀏覽:104
php函數隨機數字 瀏覽:415
申請杭州戶籍用什麼app 瀏覽:965
eda編譯實驗報告 瀏覽:347
app在哪裡可以下 瀏覽:784
linux防火牆埠號 瀏覽:546
思科模擬器雲與伺服器相連 瀏覽:254
ispf命令 瀏覽:403
考試app怎麼預約 瀏覽:902
數據前處理python 瀏覽:666
pr編譯影片錯誤是為什麼 瀏覽:815
python編譯嵌套的目錄 瀏覽:833
伺服器火災用什麼滅火器 瀏覽:940
tc的編譯設置 瀏覽:520