A. hadoop家族先學什麼
優先學習hadoop,總體架構先了解清楚,有助於以後細節的具體學習。劉鵬的基本書寫的很入門,推薦看一看。煉數成金的hadoop視頻教程很不錯,值得入門看看。然後就可以學習hadoop權威指南。hadoop源碼分析,這個地方有張鑫寫的《深入雲計算:hadoop源代碼分析》,和《hadoop源碼分析》,之後就可以學習hive和pig,habse,zookeeper,這時候你如果有一定的資料庫知識,會簡單一點,如果不知道,那可以去了解一下資料庫的知識。等你把這些學會了,新的項目,我想hadoop源碼都會的人,應該不難了吧!歡迎採納,交流。——支持開源!熱愛學習!吼吼。
B. 如何編譯Apache Hadoop2.4.0源代碼
安裝JDK
hadoop是java寫的,編譯hadoop必須安裝jdk。
從oracle官網下載jdk,下載地址是http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html,選擇 jdk-7u45-linux-x64.tar.gz下載。
tar -zxvfjdk-7u45-linux-x64.tar.gz
會生成一個文件夾jdk1.7.0_45,然後設置環境變數中。
執行命令 vi/etc/profile,增加以下內容到配置文件中,結果顯示如下
export JAVA_HOME=/usr/java/jdk1.7.0_45
export JAVA_OPTS="-Xms1024m-Xmx1024m"
exportCLASSPATH=.:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:$CLASSPATH
export PATH=$JAVA_HOME/bin:$PATH
保存退出文件後,執行以下命令
source /etc/profile
java –version 看到顯示的版本信息即正確。
安裝maven
hadoop源碼是使用maven組織管理的,必須下載maven。從maven官網下載,下載地址是http://maven.apache.org/download.cgi,選擇 apache-maven-3.1.0-bin.tar.gz 下載,不要選擇3.1下載。
執行以下命令解壓縮jdk
tar -zxvf apache-maven-3.1.0-bin.tar.gz
會生成一個文件夾apache-maven-3.1.0,然後設置環境變數中。
執行命令vi /etc/profile,編輯結果如下所示
MAVEN_HOME=/usr/maven/apache-maven-3.1.0
export MAVEN_HOME
export PATH=${PATH}:${MAVEN_HOME}/bin
保存退出文件後,執行以下命令
source /etc/profile
mvn -version
如果看到下面的顯示信息,證明配置正確了。
C. hadoop2.x採用什麼技術構建源代碼
首先,不得不說,hadoop發展到現在這個階段,代碼已經變得非常龐大臃腫,如果你直接閱讀最新版本的源代碼,難度比較大,需要足夠的耐心和時間,所以,如果你覺得認真一次,認真閱讀一次hadoop源代碼,一定要有足夠的心理准備和時間預期。 其次,
D. hadoop hdfs 源碼怎麼看
在使用Hadoop的過程中,很容易通過FileSystem類的API來讀取HDFS中的文件內容,讀取內容的過程是怎樣的呢?今天來分析客戶端讀取HDFS文件的過程,下面的一個小程序完成的功能是讀取HDFS中某個目錄下的文件內容,然後輸出到控制台,代碼如下:
[java] view plain
public class LoadDataFromHDFS {
public static void main(String[] args) throws IOException {
new LoadDataFromHDFS().loadFromHdfs("hdfs://localhost:9000/user/wordcount/");
}
public void loadFromHdfs(String hdfsPath) throws IOException {
Configuration conf = new Configuration();
Path hdfs = new Path(hdfsPath);
FileSystem in = FileSystem.get(conf);
//in = FileSystem.get(URI.create(hdfsPath), conf);//這兩行都會創建一個DistributedFileSystem對象
FileStatus[] status = in.listStatus(hdfs);
for(int i = 0; i < status.length; i++) {
byte[] buff = new byte[1024];
FSDataInputStream inputStream = in.open(status[i].getPath());
while(inputStream.read(buff) > 0) {
System.out.print(new String(buff));
}
inputStream.close();
}
}
}
FileSystem in = FileSystem.get(conf)這行代碼創建一個DistributedFileSystem,如果直接傳入一個Configuration類型的參數,那麼默認會讀取屬性fs.default.name的值,根據這個屬性的值創建對應的FileSystem子類對象,如果沒有配置fs.default.name屬性的值,那麼默認創建一個org.apache.hadoop.fs.LocalFileSystem類型的對象。但是這里是要讀取HDFS中的文件,所以在core-site.xml文件中配置fs.default.name屬性的值為hdfs://localhost:9000,這樣FileSystem.get(conf)返回的才是一個DistributedFileSystem類的對象。 還有一種創建DistributedFileSystem這種指定文件系統類型對像的方法是使用FileSystem.get(Configuration conf)的一個重載方法FileSystem.get(URI uri, Configuration),其實調用第一個方法時在FileSystem類中先讀取conf中的屬性fs.default.name的值,再調用的FileSystem.get(URI uri, Configuration)方法。
E. 如何高效的閱讀hadoop源代碼
R語言和Hadoop讓我們體會到了,兩種技術在各自領域的強大。很多開發人員在計算機的角度,都會提出下面2個問題。問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?
問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?下面我嘗試著做一個解答:問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?
a. Hadoop家族的強大之處,在於對大數據的處理,讓原來的不可能(TB,PB數據量計算),成為了可能。
b. R語言的強大之處,在於統計分析,在沒有Hadoop之前,我們對於大數據的處理,要取樣本,假設檢驗,做回歸,長久以來R語言都是統計學家專屬的工具。
c. 從a和b兩點,我們可以看出,hadoop重點是全量數據分析,而R語言重點是樣本數據分析。 兩種技術放在一起,剛好是最長補短!
d. 模擬場景:對1PB的新聞網站訪問日誌做分析,預測未來流量變化
d1:用R語言,通過分析少量數據,對業務目標建回歸建模,並定義指標d2:用Hadoop從海量日誌數據中,提取指標數據d3:用R語言模型,對指標數據進行測試和調優d4:用Hadoop分步式演算法,重寫R語言的模型,部署上線這個場景中,R和Hadoop分別都起著非常重要的作用。以計算機開發人員的思路,所有有事情都用Hadoop去做,沒有數據建模和證明,」預測的結果」一定是有問題的。以統計人員的思路,所有的事情都用R去做,以抽樣方式,得到的「預測的結果」也一定是有問題的。所以讓二者結合,是產界業的必然的導向,也是產界業和學術界的交集,同時也為交叉學科的人才提供了無限廣闊的想像空間。問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?
a. Mahout是基於Hadoop的數據挖掘和機器學習的演算法框架,Mahout的重點同樣是解決大數據的計算的問題。
b. Mahout目前已支持的演算法包括,協同過濾,推薦演算法,聚類演算法,分類演算法,LDA, 樸素bayes,隨機森林。上面的演算法中,大部分都是距離的演算法,可以通過矩陣分解後,充分利用MapRece的並行計算框架,高效地完成計算任務。
c. Mahout的空白點,還有很多的數據挖掘演算法,很難實現MapRece並行化。Mahout的現有模型,都是通用模型,直接用到的項目中,計算結果只會比隨機結果好一點點。Mahout二次開發,要求有深厚的JAVA和Hadoop的技術基礎,最好兼有 「線性代數」,「概率統計」,「演算法導論」 等的基礎知識。所以想玩轉Mahout真的不是一件容易的事情。
d. R語言同樣提供了Mahout支持的約大多數演算法(除專有演算法),並且還支持大量的Mahout不支持的演算法,演算法的增長速度比mahout快N倍。並且開發簡單,參數配置靈活,對小型數據集運算速度非常快。
雖然,Mahout同樣可以做數據挖掘和機器學習,但是和R語言的擅長領域並不重合。集百家之長,在適合的領域選擇合適的技術,才能真正地「保質保量」做軟體。
如何讓Hadoop結合R語言?
從上一節我們看到,Hadoop和R語言是可以互補的,但所介紹的場景都是Hadoop和R語言的分別處理各自的數據。一旦市場有需求,自然會有商家填補這個空白。
1). RHadoop
RHadoop是一款Hadoop和R語言的結合的產品,由RevolutionAnalytics公司開發,並將代碼開源到github社區上面。RHadoop包含三個R包 (rmr,rhdfs,rhbase),分別是對應Hadoop系統架構中的,MapRece, HDFS, HBase 三個部分。
2). RHiveRHive是一款通過R語言直接訪問Hive的工具包,是由NexR一個韓國公司研發的。
3). 重寫Mahout用R語言重寫Mahout的實現也是一種結合的思路,我也做過相關的嘗試。
4).Hadoop調用R
上面說的都是R如何調用Hadoop,當然我們也可以反相操作,打通JAVA和R的連接通道,讓Hadoop調用R的函數。但是,這部分還沒有商家做出成形的產品。
5. R和Hadoop在實際中的案例
R和Hadoop的結合,技術門檻還是有點高的。對於一個人來說,不僅要掌握Linux, Java, Hadoop, R的技術,還要具備 軟體開發,演算法,概率統計,線性代數,數據可視化,行業背景 的一些基本素質。在公司部署這套環境,同樣需要多個部門,多種人才的的配合。Hadoop運維,Hadoop演算法研發,R語言建模,R語言MapRece化,軟體開發,測試等等。所以,這樣的案例並不太多。