① matlab怎麼運行基於遺傳演算法的vrp
function [x fx string]=fun_SuiJiSuanFa2(N,genLenth,Pc,Pm,downbound,upbound,generation)
%[x fx string]=fun_SuiJiSuanFa2(6,16,0.7,0.01,-3,3,100)
%f 表示函數
%N表示染色體種群大小
%genLenth表示染色體長度
%Pc表示交叉概率
%Pm表示突變概率
%downbound
%upbound
%generation循環代數
%進制編碼,此處編寫為二進制
num=2;
initdata=randi([0 num-1],N,genLenth);
%二進制編碼的權值
weight=(num).^(genLenth/2-1:-1:0);
weights=repmat(weight,N,1);
%保存每代的最好值和平均值,
meanally=zeros(1,generation);
maxally=zeros(1,generation);
Nowx=zeros(generation,genLenth);
for k=1:generation
%解碼後的整數
allx1=sum(initdata(:,1:genLenth/2).*weights,2);
allx2=sum(initdata(:,genLenth/2+1:end).*weights,2);
%映射到取值范圍
delt=(upbound-downbound)/(num^(genLenth/2)-1);
allx1=allx1.*delt+downbound;
allx2=allx2.*delt+downbound;
%染色體的適應性
ally=f(allx1,allx2);
%平均值,最大值
meanally(k)=mean(ally);
maxally(k)=max(ally);
%找下標,確定是哪條染色體
index=find(ally==maxally(k));
Nowx(k,:)=initdata(index(1),:);
%最大值沒有提高就取上次的
if(k>=2&&maxally(k)<maxally(k-1))
maxally(k)=maxally(k-1);
Nowx(k,:)=Nowx(k-1,:);
end
%染色體的適應性比率
ratio=ally./sum(ally);
%交叉,變異
%??交叉幾個,從第幾個開始。
%此處只交叉1個(總共才6個),隨機給一個。
sumRatio=cumsum(ratio);
data=zeros(N,genLenth);
for i=1:N/2
Select1=find(sumRatio>=rand);
Select2=find(sumRatio>=rand);
data(2*i-1,:)=initdata(Select1(1),:);
data(2*i,:)=initdata(Select2(1),:);
if(rand<Pc)
%交叉
location=randi([1,genLenth]);
temp=data(2*i-1,location:end);
data(2*i-1,location:end)=data(2*i,location:end);
data(2*i,location:end)=temp;
else
%變異
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i-1,location)=1-data(2*i-1,location);
end
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i,location)=1-data(2*i,location);
end
end
end
initdata=data;
end
fx=max(maxally);
lastIndex=find(maxally==fx);
string=Nowx(lastIndex(1),:);
x(1)=sum(string(1:genLenth/2).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
x(2)=sum(string(1+genLenth/2:end).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
%繪制性能圖
%figure,hold on;
clf;figure(1),hold on;
plot((1:k)',meanally,'b.-');
plot((1:k)',maxally,'r.:');
end
function fun=f(x,y)
fun=(1-x).^2.*exp(-x.^2-(1+y).^2)-(x-x.^3-y.^3).*exp(-x.^2-y.^2);
%fun=-(x-1).^2-3.*(y-2).^2+100;
end
② 求貨郎擔問題的matlab演算法
貨郎擔問題有很多解法,模擬退火,遺傳演算法,動態規劃等。
基於matlab TSP問題遺傳演算法的實現
%TSP問題(又名:旅行商問題,貨郎擔問題)遺傳演算法通用matlab程序
%D是距離矩陣,n為種群個數,建議取為城市個數的1~2倍,
%C為停止代數,遺傳到第 C代時程序停止,C的具體取值視問題的規模和耗費的時間而定
%m為適應值歸一化淘汰加速指數 ,最好取為1,2,3,4 ,不宜太大
%alpha為淘汰保護指數,可取為0~1之間任意小數,取1時關閉保護功能,最好取為0.8~1.0
%R為最短路徑,Rlength為路徑長度
function [R,Rlength]=geneticTSP(D,n,C,m,alpha)
[N,NN]=size(D);
farm=zeros(n,N);%用於存儲種群
for i=1:n
farm(i,:)=randperm(N);%隨機生成初始種群
end
R=farm(1,:);%存儲最優種群
len=zeros(n,1);%存儲路徑長度
fitness=zeros(n,1);%存儲歸一化適應值
counter=0;
while counter<c
for i=1:n
len(i,1)=myLength(D,farm(i,:));%計算路徑長度
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);%計算歸一化適應值
rr=find(len==minlen);
R=farm(rr(1,1),:);%更新最短路徑
FARM=farm;%優勝劣汰,nn記錄了復制的個數
nn=0;
for i=1:n
if fitness(i,1)>=alpha*rand
nn=nn+1;
FARM(nn,:)=farm(i,:);
end
end
FARM=FARM(1:nn,:);
[aa,bb]=size(FARM);%交叉和變異
while aa<n
if nn<=2
nnper=randperm(2);
else
nnper=randperm(nn);
end
A=FARM(nnper(1),:);
B=FARM(nnper(2),:);
[A,B]=intercross(A,B);
FARM=[FARM;A;B];
[aa,bb]=size(FARM);
end
if aa>n
FARM=FARM(1:n,:);%保持種群規模為n
end
farm=FARM;
clear FARM
counter=counter+1
end
Rlength=myLength(D,R);
function [a,b]=intercross(a,b)
L=length(a);
if L<=10%確定交叉寬度
W=1;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10);
else
W
http://blog.renren.com/share/231644124/531791903
③ 如何在遺傳演算法中設置變數約束條件
1、首先打開matlab軟體,在「APP(應用)」選項卡中選擇「Optimization(優化)」工具箱。
④ 我需要一個基於免疫遺傳演算法的matlab程序,關於函數尋優的,最好在附有講解
% 主程序
%遺傳演算法主程序
%Name:genmain.m
%author:楊冪
clear
clf
%%初始化
popsize=50; %群體大小
chromlength=30; %字元串長度(個體長度)
pc=0.6; %交叉概率
pm=0.1; %變異概率
pop=initpop(popsize,chromlength); %隨機產生初始群體
%%開始迭代
for i=1:20 %20為迭代次數
[objvalue]=calobjvalue(pop); %計算目標函數
fitvalue=calfitvalue(objvalue); %計算群體中每個個體的適應度
[newpop]=selection(pop,fitvalue); %復制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pm); %變異
[bestindivial,bestfit]=best(pop,fitvalue); %求出群體中適應值最大的個體及其適應值
y(i)=max(bestfit);%儲存最優個體適應值
n(i)=i;
pop5=bestindivial;%儲存最優個體
%解碼
x1(i)=decodechrom(pop5,1,chromlength/2)*2/32767;
x2(i)=10+decodechrom(pop5,chromlength/2+1,chromlength/2)*10/32767;
pop=newpop;%將新產生的種群作為當前種群
end
%%繪圖
figure(1)%最優點變化趨勢圖
i=1:20;
plot(y(i),'-r*')
xlabel('迭代次數');
ylabel('最優個體適應值');
title('最優點變化趨勢');
legend('最優點');
grid on
figure(2)%最優點分布圖
[X1,X2]=meshgrid(0:0.1:2,10:0.1:20);
Z=X1.^2+X2.^2;
mesh(X1,X2,Z);
xlabel('自變數x1'),ylabel('自變數x2'),zlabel('函數值f(x1,x2)');
hold on
plot3(x1,x2,y,'ro','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',5)
title('最優點分布');
legend('最優點');
hold off
[z index]=max(y); %計算最大值及其位置
x5=[x1(index),x2(index)]%計算最大值對應的x值
z
⑤ BP神經網路的原理的BP什麼意思
原文鏈接:http://tecdat.cn/?p=19936
在本教程中,您將學習如何在R語言中創建神經網路模型。
神經網路(或人工神經網路)具有通過樣本進行學習的能力。人工神經網路是一種受生物神經元系統啟發的信息處理模型。它由大量高度互連的處理元件(稱為神經元)組成,以解決問題。它遵循非線性路徑,並在整個節點中並行處理信息。神經網路是一個復雜的自適應系統。自適應意味著它可以通過調整輸入權重來更改其內部結構。
該神經網路旨在解決人類容易遇到的問題和機器難以解決的問題,例如識別貓和狗的圖片,識別編號的圖片。這些問題通常稱為模式識別。它的應用范圍從光學字元識別到目標檢測。
本教程將涵蓋以下主題:
神經網路概論
正向傳播和反向傳播
激活函數
R中神經網路的實現
案例
利弊
結論
神經網路概論
神經網路是受人腦啟發執行特定任務的演算法。它是一組連接的輸入/輸出單元,其中每個連接都具有與之關聯的權重。在學習階段,網路通過調整權重進行學習,來預測給定輸入的正確類別標簽。
人腦由數十億個處理信息的神經細胞組成。每個神經細胞都認為是一個簡單的處理系統。被稱為生物神經網路的神經元通過電信號傳輸信息。這種並行的交互系統使大腦能夠思考和處理信息。一個神經元的樹突接收來自另一個神經元的輸入信號,並根據這些輸入將輸出響應到某個其他神經元的軸突。
創建測試數據集
創建測試數據集:專業知識得分和溝通技能得分
預測測試集的結果
使用計算函數預測測試數據的概率得分。
現在,將概率轉換為二進制類。
預測結果為1,0和1。
利弊
神經網路更靈活,可以用於回歸和分類問題。神經網路非常適合具有大量輸入(例如圖像)的非線性數據集,可以使用任意數量的輸入和層,可以並行執行工作。
還有更多可供選擇的演算法,例如SVM,決策樹和回歸演算法,這些演算法簡單,快速,易於訓練並提供更好的性能。神經網路更多的是黑盒子,需要更多的開發時間和更多的計算能力。與其他機器學習演算法相比,神經網路需要更多的數據。NN僅可用於數字輸入和非缺失值數據集。一位著名的神經網路研究人員說:「神經網路是解決任何問題的第二好的方法。最好的方法是真正理解問題。」
神經網路的用途
神經網路的特性提供了許多應用方面,例如:
模式識別:神經網路非常適合模式識別問題,例如面部識別,物體檢測,指紋識別等。
異常檢測:神經網路擅長異常檢測,它們可以輕松檢測出不適合常規模式的異常模式。
時間序列預測:神經網路可用於預測時間序列問題,例如股票價格,天氣預報。
自然語言處理:神經網路在自然語言處理任務中提供了廣泛的應用,例如文本分類,命名實體識別(NER),詞性標記,語音識別和拼寫檢查。
最受歡迎的見解
1.r語言用神經網路改進nelson-siegel模型擬合收益率曲線分析
2.r語言實現擬合神經網路預測和結果可視化
3.python用遺傳演算法-神經網路-模糊邏輯控制演算法對樂透分析
4.用於nlp的python:使用keras的多標簽文本lstm神經網路分類
5.用r語言實現神經網路預測股票實例
6.R語言基於Keras的小數據集深度學習圖像分類
7.用於NLP的seq2seq模型實例用Keras實現神經機器翻譯
8.python中基於網格搜索演算法優化的深度學習模型分析糖
9.matlab使用貝葉斯優化的深度學習