① 所有進制的演算法
#include <stdio.h>void a();void b();void c();void main(){ int s; do { printf("0.退出\n1.十進制~二進制\n2.十進制~八進制\n3.十進制~十六進制\n請選擇:"); scanf("%d",&s); if(s==0) { break; } switch(s) { case 1: a();break; case 2: b();break; case 3: c();break; default:printf("輸入有誤!請輸入0~4之間的數\n");break; } }while(1);}void a(){ int num,p[100],n=0,i; printf("請輸入一個十進制整數:"); scanf("%d",&num); while(num!=0) { p[n]=num%2; num/=2; n++; } for(i=n-1;i>=0;i--) { printf("%d",p[i]); } printf("\n");}void b(){ int num,p[100],n=0,i; printf("請輸入一個十進制整數:"); scanf("%d",&num); while(num!=0) { p[n]=num%8; num/=8; n++; } for(i=n-1;i>=0;i--) { printf("%d",p[i]); } printf("\n");}void c(){ int num,p[100],n=0,i; printf("請輸入一個十進制整數:"); scanf("%d",&num); while(num!=0) { p[n]=num%16; num/=16; n++; } for(i=n-1;i>=0;i--) { if(p[i]<10) { printf("%d",p[i]); } else { switch(p[i]) { case 10: printf("A"); break; case 11: printf("B"); break; case 12: printf("C"); break; case 13: printf("D"); break; case 14: printf("E"); break; case 15: printf("F"); break; } } } printf("\n");} 答案補充 10進制數轉化成R進制數就是不斷地 取余、整除,最後把所有餘倒序排列 比如:6轉化成2進制數的步驟是,6取2的余是0,整除得3,3取2的余是1,整除得1,1取2的余是1,整除2得0,計算結束,再把所有餘倒序排列,即110。
其它進制也是同樣的道理,如果進制大於10,就要用ABCD來分別表示10進制中的(10、11、12、13、14),可以去查詢下權的概念
② 十一進制加法怎麼算
十一進制下 15是十進制的 16 30 是十進制的 33
③ 11的16進制是多少怎麼算
如果11是十進制,直接根據十進制對應十六進制的值,得到結果B;
如果11是二進制,先轉換成十進制3,再直接根據十進制對應十六進制的值,得到結果3;
如果11是八進制,先轉換成十進制9,再直接根據十進制對應十六進制的值,得到結果9.
④ 11進制計算是什麼意思如何用11進制計算3+13+15=
先用10進制計算得31,再轉換成11進制,31/11=2~~9,所以11進制下為29
⑤ 十一進制計算器下載
你只需要編一個10進制轉11進制、一個11進制轉10進制的函數,剩下的和10進制的計算器沒多大差別。
⑥ 10進制轉化11進制的計算過程
採用除基取余法,基數為11,
123/11,商11,餘2
11/11,商1,餘0
1/11,商0,餘1
從上到下依次是個位、十位、百位,
所以,最終結果為(102)11。
(123)10=(102)11
⑦ 11進制的計演算法則是什麼
加減法和其他進制一樣,只是人們不習慣。進制間的相互轉化也是一樣按規律套就是了
⑧ 二進制11*11=1001怎樣算出來
有兩種方法`1.轉換為十進制計算,二進制的11就是10進制的3,也就是3*3=9 .而9的二進制是10012. 就想10進制計算一樣,列個豎等式,但是記住,滿二進一 11 * 11 ------- 11 11 ------- 1001就出來啦
⑨ 十一進制33轉為十進制30的具體計算過程。
因為要參加軟考了(當然也只有考試有這種魅力),我得了概浮點數轉化為二進製表示這個最難的知識點(個人認為最難)。俺結合大量的從網上收集而來的資料現整理如下,希望對此知識點感興趣的pfan有所幫助。基礎知識:十進制轉十六進制;十六進制轉二進制;IEEE制定的浮點數表示規則;了解:目前C/C++編譯器標准都遵照IEEE制定的浮點數表示法來進行float,double運算。這種結構是一種科學計數法,用符號、指數和尾數來表示,底數定為2——即把一個浮點數表示為尾數乘以2的指數次方再添上符號。下面是具體的規格:符號位階碼尾數長度float182332double1115264以下通過幾個例子講解浮點數如何轉換為二進制數例一:已知:double類型38414.4。求:其對應的二進製表示。分析:double類型共計64位,摺合8位元組。由最高到最低位分別是第63、62、61、……、0位:最高位63位是符號位,1表示該數為負,0表示該數為正;62-52位,一共11位是指數位;51-0位,一共52位是尾數位。步驟:按照IEEE浮點數表示法,下面先把38414.4轉換為十六進制數。把整數部和小數部分開處理:整數部直接化十六進制:960E。小數的處理:0.4=0.5*0+0.25*1+0.125*1+0.0625*0+……實際上這永遠算不完!這就是著名的浮點數精度問題。所以直到加上前面的整數部分算夠53位就行了。隱藏位技術:最高位的1不寫入內存(最終保留下來的還是52位)。如果你夠耐心,手工算到53位那麼因該是:38414.4(10)=1001011000001110.(2)科學記數法為:1.001011000001110,右移了15位,所以指數為15。或者可以如下理解:1.001011000001110×2^15於是來看階碼,按IEEE標准一共11位,可以表示範圍是-1024~1023。因為指數可以為負,為了便於計算,規定都先加上1023(2^10-1),在這里,階碼:15+1023=1038。二進製表示為:10000001110;符號位:因為38414.4為正對應為0;合在一起(註:尾數二進制最高位的1不要):010000001110001011000001110