1. 粒子群演算法的參數設置
從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤
PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置
粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200
粒子的長度: 這是由優化問題決定, 就是問題解的長度
粒子的范圍: 由優化問題決定,每一維可以設定不同的范圍
Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20
學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間
中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定.
全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再用局部PSO進行搜索. 代碼來自2008年數學建模東北賽區B題, #includestdafx.h#include<math.h>#include<time.h>#include<iostream>#include<fstream>usingnamespacestd;intc1=2;//加速因子intc2=2;//加速因子doublew=1;//慣性權重doubleWmax=1;//最大慣性權重doubleWmin=0.6;//最小慣性權重intKmax=110;//迭代次數intGdsCnt;//物資總數intconstDim=10;//粒子維數intconstPNum=50;//粒子個數intGBIndex=0;//最優粒子索引doublea=0.6;//適應度調整因子doubleb=0.5;//適應度調整因子intXup[Dim];//粒子位置上界數組intXdown[Dim]=;//粒子位置下界數組intValue[Dim];//初始急需度數組intVmax[Dim];//最大速度數組classPARTICLE;//申明粒子節點voidCheck(PARTICLE&,int);//約束函數voidInput(ifstream&);//輸入變數voidInitial();//初始化相關變數doubleGetFit(PARTICLE&);//計算適應度voidCalculateFit();//計算適應度voidBirdsFly();//粒子飛翔voidRun(ofstream&,int=2000);//運行函數classPARTICLE//微粒類{public:intX[Dim];//微粒的坐標數組intXBest[Dim];//微粒的最好位置數組intV[Dim];//粒子速度數組doubleFit;//微粒適合度doubleFitBest;//微粒最好位置適合度};PARTICLEParr[PNum];//粒子數組intmain()//主函數{ofstreamoutf(out.txt);ifstreaminf(data.txt);//關聯輸入文件inf>>GdsCnt;//輸入物資總數Input(inf);Initial();Run(outf,100);system(pause);return0;}voidCheck(PARTICLE&p,intcount)//參數:p粒子對象,count物資數量{srand((unsigned)time(NULL));intsum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}while(sum>count){p.X[rand()%Dim]--;sum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}}voidInput(ifstream&inf)//以inf為對象輸入數據{for(inti=0;i<Dim;i++)inf>>Xup;for(inti=0;i<Dim;i++)inf>>Value;}voidInitial()//初始化數據{GBIndex=0;srand((unsigned)time(NULL));//初始化隨機函數發生器for(inti=0;i<Dim;i++)Vmax=(int)((Xup-Xdown)*0.035);for(inti=0;i{for(intj=0;j<Dim;j++){Parr.X[j]=(int)(rand()/(double)RAND_MAX*(Xup[j]-Xdown[j])-Xdown[j]+0.5);Parr.XBest[j]=Parr.X[j];Parr.V[j]=(int)(rand()/(double)RAND_MAX*(Vmax[j]-Vmax[j]/2));}Parr.Fit=GetFit(Parr);Parr.FitBest=Parr.Fit;if(Parr.Fit>Parr[GBIndex].Fit)GBIndex=i;}}doubleGetFit(PARTICLE&p)//計算對象適應度{doublesum=0;for(inti=0;i<Dim;i++)for(intj=1;j<=p.X;j++)sum+=(1-(j-1)*a/(Xup-b))*Value;returnsum;}voidCalculateFit()//計算數組內各粒子的適應度{for(inti=0;i{Parr.Fit=GetFit(Parr);}}voidBirdsFly()//粒子飛行尋找最優解{srand((unsigned)time(NULL));staticintk=10;w=Wmax-k*(Wmax-Wmin)/Kmax;k++;for(inti=0;i{for(intj=0;j<Dim;j++){Parr.V[j]=(int)(w*Parr.V[j]);Parr.V[j]+=(int)(c1*rand()/(double)RAND_MAX*(Parr.XBest[j]-Parr.X[j]);Parr.V[j]+=c2*rand()/(double)RAND_MAX*(Parr[GBIndex].XBest[j]-Parr.X[j]));}}Check(Parr,GdsCnt);for(intj=0;j<Dim;j++){Parr.X[j]+=Parr.V[j];Check(Parr,GdsCnt);}CalculateFit();for(inti=0;i{if(Parr.Fit>=Parr.FitBest){Parr.FitBest=Parr.Fit;for(intj=0;j<Dim;j++)Parr.XBest[j]=Parr.X[j];}}GBIndex=0;for(inti=0;i{if(Parr.FitBest>Parr[GBIndex].FitBest&&i!=GBIndex)GBIndex=i;}}voidRun(ofstream&outf,intnum)//令粒子以規定次數num飛行{for(inti=0;i<num;i++){BirdsFly();outf<<(i+1)<<ends<for(intj=0;j<Dim;j++)outf<outf<<endl;}cout<<Done!<<endl;}
2. 粒子群演算法屬於什麼學科
粒子群演算法屬於計算智能的范疇,如果按照學科分的話當然是計算機學科。
另外粒子群演算法是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。
——————————————————————————
另外關於計算智能的相關介紹便可以了解
計算智能的主要方法有人工神經網路、遺傳演算法、遺傳程序、演化程序、局部搜索、模擬退火等等。這些方法具有以下共同的要素:自適應的結構、隨機產生的或指定的初始狀態、適應度的評測函數、修改結構的操作、系統狀態存儲器、終止計算的條件、指示結果的方法、控制過程的參數。計算智能的這些方法具有自學習、自組織、自適應的特徵和簡單、通用、魯棒性強、適於並行處理的優點。在並行搜索、聯想記憶、模式識別、知識自動獲取等方面得到了廣泛的應用。
典型的代表如遺傳演算法、免疫演算法、模擬退火演算法、蟻群演算法、微粒群演算法(也就是粒子群演算法,翻譯不同罷了),都是一種仿生演算法,基於「從大自然中獲取智慧」的理念,通過人們對自然界獨特規律的認知,提取出適合獲取知識的一套計算工具。總的來說,通過自適應學習的特性,這些演算法達到了全局優化的目的。
3. 粒子群演算法的優缺點
優點:PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。同遺傳演算法比較,PSO的優勢在於簡單容易實現,並且沒有許多參數需要調整。
缺點:在某些問題上性能並不是特別好。網路權重的編碼而且遺傳運算元的選擇有時比較麻煩。最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。
(3)局部粒子群演算法擴展閱讀:
注意事項:
基礎粒子群演算法步驟較為簡單。粒子群優化演算法是由一組粒子在搜索空間中運動,受其自身的最佳過去位置pbest和整個群或近鄰的最佳過去位置gbest的影響。
對於有些改進演算法,在速度更新公式最後一項會加入一個隨機項,來平衡收斂速度與避免早熟。並且根據位置更新公式的特點,粒子群演算法更適合求解連續優化問題。
4. 什麼是粒子群演算法
粒子群演算法介紹(摘自http://blog.sina.com.cn/newtech)
優化問題是工業設計中經常遇到的問題,許多問題最後都可以歸結為優化問題. 為了解決各種各樣的優化問題,人們提出了許多優化演算法,比較著名的有爬山法、遺傳演算法等.優化問題有兩個主要問題:一是要求尋找全局最小點,二是要求有較高的收斂速度. 爬山法精度較高,但是易於陷入局部極小. 遺傳演算法屬於進化演算法( Evolutionary Algorithms) 的一種,它通過模仿自然界的選擇與遺傳的機理來尋找最優解. 遺傳演算法有三個基本運算元:選擇、交叉和變異. 但是遺傳演算法的編程實現比較復雜,首先需要對問題進行編碼,找到最優解之後還需要對問題進行解碼,另外三個運算元的實現也有許多參數,如交叉率和變異率,並且這些參數的選擇嚴重影響解的品質,而目前這些參數的選擇大部分是依靠經驗.1995 年Eberhart 博士和kennedy 博士提出了一種新的演算法;粒子群優化(Partical Swarm Optimization -PSO) 演算法 . 這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性.
粒子群優化(Partical Swarm Optimization - PSO) 演算法是近年來發展起來的一種新的進化演算法( Evolu2tionary Algorithm - EA) .PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質. 但是它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作. 它通過追隨當前搜索到的最優值來尋找全局最優 .
粒子群演算法
1. 引言
粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),有Eberhart博士和kennedy博士發明。源於對鳥群捕食的行為研究
PSO同遺傳演算法類似,是一種基於疊代的優化工具。系統初始化為一組隨機解,通過疊代搜尋最優值。但是並沒有遺傳演算法用的交叉(crossover)以及變異(mutation)。而是粒子在解空間追隨最優的粒子進行搜索。詳細的步驟以後的章節介紹
同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域
2. 背景: 人工生命
"人工生命"是來研究具有某些生命基本特徵的人工系統. 人工生命包括兩方面的內容
1. 研究如何利用計算技術研究生物現象
2. 研究如何利用生物技術研究計算問題
我們現在關注的是第二部分的內容. 現在已經有很多源於生物現象的計算技巧. 例如, 人工神經網路是簡化的大腦模型. 遺傳演算法是模擬基因進化過程的.
現在我們討論另一種生物系統- 社會系統. 更確切的是, 在由簡單個體組成的群落與環境以及個體之間的互動行為. 也可稱做"群智能"(swarm intelligence). 這些模擬系統利用局部信息從而可能產生不可預測的群體行為
例如floys 和 boids, 他們都用來模擬魚群和鳥群的運動規律, 主要用於計算機視覺和計算機輔助設計.
在計算智能(computational intelligence)領域有兩種基於群智能的演算法. 蟻群演算法(ant colony optimization)和粒子群演算法(particle swarm optimization). 前者是對螞蟻群落食物採集過程的模擬. 已經成功運用在很多離散優化問題上.
粒子群優化演算法(PSO) 也是起源對簡單社會系統的模擬. 最初設想是模擬鳥群覓食的過程. 但後來發現PSO是一種很好的優化工具.
3. 演算法介紹
如前所述,PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的例子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索
PSO 初始化為一群隨機粒子(隨機解)。然後通過疊代找到最優解。在每一次疊代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解。這個解叫做個體極值pBest. 另一個極值是整個種群目前找到的最優解。這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分最為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。
在找到這兩個最優值時, 粒子根據如下的公式來更新自己的速度和新的位置
v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)
v[] 是粒子的速度, persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2.
程序的偽代碼如下
For each particle
____Initialize particle
END
Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End
____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained
在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax
4. 遺傳演算法和 PSO 的比較
大多數演化計算技術都是用同樣的過程
1. 種群隨機初始化
2. 對種群內的每一個個體計算適應值(fitness value).適應值與最優解的距離直接有關
3. 種群根據適應值進行復制
4. 如果終止條件滿足的話,就停止,否則轉步驟2
從以上步驟,我們可以看到PSO和GA有很多共同之處。兩者都隨機初始化種群,而且都使用適應值來評價系統,而且都根據適應值來進行一定的隨機搜索。兩個系統都不是保證一定找到最優解
但是,PSO 沒有遺傳操作如交叉(crossover)和變異(mutation). 而是根據自己的速度來決定搜索。粒子還有一個重要的特點,就是有記憶。
與遺傳演算法比較, PSO 的信息共享機制是很不同的. 在遺傳演算法中,染色體(chromosomes) 互相共享信息,所以整個種群的移動是比較均勻的向最優區域移動. 在PSO中, 只有gBest (or lBest) 給出信息給其他的粒子,這是單向的信息流動. 整個搜索更新過程是跟隨當前最優解的過程. 與遺傳演算法比較, 在大多數的情況下,所有的粒子可能更快的收斂於最優解
5. 人工神經網路 和 PSO
人工神經網路(ANN)是模擬大腦分析過程的簡單數學模型,反向轉播演算法是最流行的神經網路訓練演算法。進來也有很多研究開始利用演化計算(evolutionary computation)技術來研究人工神經網路的各個方面。
演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。
不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值
演化計算的優勢在於可以處理一些傳統方法不能處理的例子例如不可導的節點傳遞函數或者沒有梯度信息存在。但是缺點在於:在某些問題上性能並不是特別好。2. 網路權重的編碼而且遺傳運算元的選擇有時比較麻煩
最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。研究表明PSO 是一種很有潛力的神經網路演算法。PSO速度比較快而且可以得到比較好的結果。而且還沒有遺傳演算法碰到的問題
這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數(Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。
我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。
6. PSO的參數設置
從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數
PSO的一個優勢就是採用實數編碼, 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤
PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置
粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200
粒子的長度: 這是由優化問題決定, 就是問題解的長度
粒子的范圍: 由優化問題決定,每一維可是設定不同的范圍
Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20
學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間
中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定.
全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再有局部PSO進行搜索.
另外的一個參數是慣性權重, 由Shi 和Eberhart提出, 有興趣的可以參考他們1998年的論文(題目: A modified particle swarm optimizer)
5. 粒子群演算法的演算法介紹
如前所述,PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。
PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個極值來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 在找到這兩個最優值時,粒子根據如下的公式來更新自己的速度和新的位置:
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = present[] + v[] (b)
v[] 是粒子的速度, w是慣性權重,present[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2.
程序的偽代碼如下
For each particle
____Initialize particle
END
Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End
____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained
在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax
6. 關於粒子群演算法的問題
粒子群的版本甚多,常用的是加有慣性權重w的
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[])
一般選擇慣性權重在迭代過程中線性下降,目的是在迭代的初期,以比較大的權重分配給粒子的原速度,而防止粒子過早的傾向於其本身的局部最優與全局最優,此時的全局搜索能力是可以的。但粒子群是基於牛頓力學的,隨著w的減小,速度v的作用會在更新中弱化,對應的是,pbest和gbest的作用得到了加強,這也就意味著,粒子會更加趨向於pbest和gbest的方向移動。這個時候粒子就特別容易陷入局部最優了。
其實陷入局部最優不只是粒子群的問題,進化類的演算法都存在這個問題,只不過有些演算法隨機性強一些,收斂速度慢一些,所以更加容易跳出局部最優(但不是絕對避免)
7. 粒子群優化的演算法參數
PSO參數包括:群體規模m,慣性權重w,加速常數c1和c2,最大速度Vmax,最大代數Gmax,解空間[Xmin Xmax]。
Vmax決定在當前位置與最好位置之間的區域的解析度(或精度)。如果Vmax太高,微粒可能會飛過好解,如果Vmax太小,微粒不能進行足夠的探索,導致陷入局部優值。該限制有三個目的:防止計算溢出;實現人工學習和態度轉變;決定問題空間搜索的粒度。
慣性權重w使微粒保持運動的慣性,使其有擴展搜索空間的趨勢,有能力探索新的區域。
加速常數c1和c2代表將每個微粒推向pbest和gbest位置的統計加速項的權重。低的值允許微粒在被拉回來之前可以在目標區域外徘徊,而高的值導致微粒突然的沖向或者越過目標區域。
如果沒有後兩部分,即c1 = c2 = 0,微粒將一直以當前的速度飛行,直到到達邊界。由於它只能搜索有限的區域,將很難找到好的解。
如果沒有第一部分,即w = 0,則速度只取決於微粒當前的位置和它們歷史最好位置pbest和gbest,速度本身沒有記憶性。假設一個微粒位於全局最好位置,它將保持靜止。而其它微粒則飛向它本身最好位置pbest和全局最好位置gbest的加權中心。在這種條件下,微粒群將統計的收縮到當前的全局最好位置,更象一個局部演算法。
在加上第一部分後,微粒有擴展搜索空間的趨勢,即第一部分有全局搜索的能力。這也使得w的作用為針對不同的搜索問題,調整演算法全局和局部搜索能力的平衡。
如果沒有第二部分,即c1 = 0,則微粒沒有認知能力,也就是「只有社會(social-only)」的模型。在微粒的相互作用下,有能力到達新的搜索空間。它的收斂速度比標准版本更快,但是對復雜問題,比標准版本更容易陷入局部優值點。
如果沒有第三部分,即c2 = 0,則微粒之間沒有社會信息共享,也就是「只有認知(cognition-only)」的模型。因為個體間沒有交互,一個規模為m的群體等價於m個單個微粒的運行。因而得到解的幾率非常小。
8. 粒子群優化演算法
粒子群演算法 的思想源於對鳥/魚群捕食行為的研究,模擬鳥集群飛行覓食的行為,鳥之間通過集體的協作使群體達到最優目的,是一種基於Swarm Intelligence的優化方法。它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。粒子群演算法與其他現代優化方法相比的一個明顯特色就是所 需要調整的參數很少、簡單易行 ,收斂速度快,已成為現代優化方法領域研究的熱點。
設想這樣一個場景:一群鳥在隨機搜索食物。已知在這塊區域里只有一塊食物;所有的鳥都不知道食物在哪裡;但它們能感受到當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢?
1. 搜尋目前離食物最近的鳥的周圍區域
2. 根據自己飛行的經驗判斷食物的所在。
PSO正是從這種模型中得到了啟發,PSO的基礎是 信息的社會共享
每個尋優的問題解都被想像成一隻鳥,稱為「粒子」。所有粒子都在一個D維空間進行搜索。
所有的粒子都由一個fitness function 確定適應值以判斷目前的位置好壞。
每一個粒子必須賦予記憶功能,能記住所搜尋到的最佳位置。
每一個粒子還有一個速度以決定飛行的距離和方向。這個速度根據它本身的飛行經驗以及同伴的飛行經驗進行動態調整。
粒子速度更新公式包含三部分: 第一部分為「慣性部分」,即對粒子先前速度的記憶;第二部分為「自我認知」部分,可理解為粒子i當前位置與自己最好位置之間的距離;第三部分為「社會經驗」部分,表示粒子間的信息共享與合作,可理解為粒子i當前位置與群體最好位置之間的距離。
第1步 在初始化范圍內,對粒子群進行隨機初始化,包括隨機位置和速度
第2步 根據fitness function,計算每個粒子的適應值
第3步 對每個粒子,將其當前適應值與其個體歷史最佳位置(pbest)對應的適應值作比較,如果當前的適應值更高,則用當前位置更新粒子個體的歷史最優位置pbest
第4步 對每個粒子,將其當前適應值與全局最佳位置(gbest)對應的適應值作比較,如果當前的適應值更高,則用當前位置更新粒子群體的歷史最優位置gbest
第5步 更新粒子的速度和位置
第6步 若未達到終止條件,則轉第2步
【通常演算法達到最大迭代次數或者最佳適應度值得增量小於某個給定的閾值時演算法停止】
粒子群演算法流程圖如下:
以Ras函數(Rastrigin's Function)為目標函數,求其在x1,x2∈[-5,5]上的最小值。這個函數對模擬退火、進化計算等演算法具有很強的欺騙性,因為它有非常多的局部最小值點和局部最大值點,很容易使演算法陷入局部最優,而不能得到全局最優解。如下圖所示,該函數只在(0,0)處存在全局最小值0。
9. 粒子群演算法(一):粒子群演算法概述
本系列文章主要針對粒子群演算法進行介紹和運用,並給出粒子群演算法的經典案例,從而進一步加深對粒子群演算法的了解與運用(預計在一周內完成本系列文章)。主要包括四個部分:
粒子群演算法也稱粒子群優化演算法(Particle Swarm Optimization, PSO),屬於群體智能優化演算法,是近年來發展起來的一種新的進化演算法(Evolutionary Algorithm, EA)。 群體智能優化演算法主要模擬了昆蟲、獸群、鳥群和魚群的群集行為,這些群體按照一種合作的方式尋找食物,群體中的每個成員通過學習它自身的經驗和其他成員的經驗來不斷地改變搜索的方向。 群體智能優化演算法的突出特點就是利用了種群的群體智慧進行協同搜索,從而在解空間內找到最優解。
PSO 演算法和模擬退火演算法相比,也是 從隨機解出發,通過迭代尋找最優解 。它是通過適應度來評價解的品質,但比遺傳演算法規則更為簡單,沒有遺傳演算法的「交叉」和「變異」,它通過追隨當前搜索到的最大適應度來尋找全局最優。這種演算法以其 容易實現、精度高、收斂快 等優點引起了學術界的重視,並在解決實際問題中展示了其優越性。
在粒子群演算法中,每個優化問題的解被看作搜索空間的一隻鳥,即「粒子」。演算法開始時首先生成初始解,即在可行解空間中隨機初始化 粒子組成的種群 ,其中每個粒子所處的位置 ,都表示問題的一個解,並依據目標函數計算搜索新解。在每次迭代時,粒子將跟蹤兩個「極值」來更新自己, 一個是粒子本身搜索到的最好解 ,另一個是整個種群目前搜索到的最優解 。 此外每個粒子都有一個速度 ,當兩個最優解都找到後,每個粒子根據如下迭代式更新:
其中參數 稱為是 PSO 的 慣性權重(inertia weight) ,它的取值介於[0,1]區間;參數 和 稱為是 學習因子(learn factor) ;而 和 為介於[0,1]之間的隨機概率值。
實踐證明沒有絕對最優的參數,針對不同的問題選取合適的參數才能獲得更好的收斂速度和魯棒性,一般情況下 , 取 1.4961 ,而 採用 自適應的取值方法 ,即一開始令 , 使得 PSO 全局優化能力較強 ;隨著迭代的深入,遞減至 , 從而使得PSO具有較強的局部優化能力 。
參數 之所以被稱之為慣性權重,是因為 實際 反映了粒子過去的運動狀態對當前行為的影響,就像是我們物理中提到的慣性。 如果 ,從前的運動狀態很少能影響當前的行為,粒子的速度會很快的改變;相反, 較大,雖然會有很大的搜索空間,但是粒子很難改變其運動方向,很難向較優位置收斂,由於演算法速度的因素,在實際運用中很少這樣設置。也就是說, 較高的 設置促進全局搜索,較低的 設置促進快速的局部搜索。
10. 粒子群優化演算法
姓名:楊晶晶 學號:21011210420 學院:通信工程學院
【嵌牛導讀】
傳統的多目標優化方法是將多目標問題通過加權求和轉化為單目標問題來處理的,而粒子演算法主要是解決一些多目標優化問題的(例如機械零件的多目標設計優化),其優點是容易實現,精度高,收斂速度快。
【嵌牛鼻子】粒子群演算法的概念、公式、調參以及與遺傳演算法的比較。
【嵌牛提問】什麼是粒子群演算法?它的計算流程是什麼?與遺傳演算法相比呢?
【嵌牛正文】
1. 概念
粒子群優化演算法(PSO:Particle swarm optimization) 是一種進化計算技術(evolutionary computation),源於對鳥群捕食的行為研究。
粒子群優化演算法的基本思想:是通過群體中個體之間的協作和信息共享來尋找最優解。
PSO的優勢:在於簡單容易實現並且沒有許多參數的調節。目前已被廣泛應用於函數優化、神經網路訓練、模糊系統控制以及其他遺傳演算法的應用領域。
2. 演算法
2.1 問題抽象
鳥被抽象為沒有質量和體積的微粒(點),並延伸到N維空間,粒子i在N維空間的位置表示為矢量Xi=(x1,x2,…,xN),飛行速度表示為矢量Vi=(v1,v2,…,vN)。每個粒子都有一個由目標函數決定的適應值(fitness value),並且知道自己到目前為止發現的最好位置(pbest)和現在的位置Xi。這個可以看作是粒子自己的飛行經驗。除此之外,每個粒子還知道到目前為止整個群體中所有粒子發現的最好位置(gbest)(gbest是pbest中的最好值),這個可以看作是粒子同伴的經驗。粒子就是通過自己的經驗和同伴中最好的經驗來決定下一步的運動。
2.2 更新規則
PSO初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次的迭代中,粒子通過跟蹤兩個「極值」(pbest,gbest)來更新自己。在找到這兩個最優值後,粒子通過下面的公式來更新自己的速度和位置。
公式(1)的第一部分稱為【記憶項】,表示上次速度大小和方向的影響;公式(1)的第二部分稱為【自身認知項】,是從當前點指向粒子自身最好點的一個矢量,表示粒子的動作來源於自己經驗的部分;公式(1)的第三部分稱為【群體認知項】,是一個從當前點指向種群最好點的矢量,反映了粒子間的協同合作和知識共享。粒子就是通過自己的經驗和同伴中最好的經驗來決定下一步的運動。
以上面兩個公式為基礎,形成了PSO的標准形式。
公式(2)和 公式(3)被視為標准PSO演算法。
2.3 標准PSO演算法流程
標准PSO演算法的流程:
1)初始化一群微粒(群體規模為N),包括隨機位置和速度;
2)評價每個微粒的適應度;
3)對每個微粒,將其適應值與其經過的最好位置pbest作比較,如果較好,則將其作為當前的最好位置pbest;
4)對每個微粒,將其適應值與其經過的最好位置gbest作比較,如果較好,則將其作為當前的最好位置gbest;
5)根據公式(2)、(3)調整微粒速度和位置;
6)未達到結束條件則轉第2)步。
迭代終止條件根據具體問題一般選為最大迭代次數Gk或(和)微粒群迄今為止搜索到的最優位置滿足預定最小適應閾值。
公式(2)和(3)中pbest和gbest分別表示微粒群的局部和全局最優位置。
當C1=0時,則粒子沒有了認知能力,變為只有社會的模型(social-only):
被稱為全局PSO演算法。粒子有擴展搜索空間的能力,具有較快的收斂速度,但由於缺少局部搜索,對於復雜問題
比標准PSO 更易陷入局部最優。
當C2=0時,則粒子之間沒有社會信息,模型變為只有認知(cognition-only)模型:
被稱為局部PSO演算法。由於個體之間沒有信息的交流,整個群體相當於多個粒子進行盲目的隨機搜索,收斂速度慢,因而得到最優解的可能性小。
2.4 參數分析
參數:群體規模N,慣性因子 ,學習因子c1和c2,最大速度Vmax,最大迭代次數Gk。
群體規模N:一般取20~40,對較難或特定類別的問題可以取到100~200。
最大速度Vmax:決定當前位置與最好位置之間的區域的解析度(或精度)。如果太快,則粒子有可能越過極小點;如果太慢,則粒子不能在局部極小點之外進行足夠的探索,會陷入到局部極值區域內。這種限制可以達到防止計算溢出、決定問題空間搜索的粒度的目的。
權重因子:包括慣性因子和學習因子c1和c2。使粒子保持著運動慣性,使其具有擴展搜索空間的趨勢,有能力探索新的區域。c1和c2代表將每個粒子推向pbest和gbest位置的統計加速項的權值。較低的值允許粒子在被拉回之前可以在目標區域外徘徊,較高的值導致粒子突然地沖向或越過目標區域。
參數設置:
1)如果令c1=c2=0,粒子將一直以當前速度的飛行,直到邊界。很難找到最優解。
2)如果=0,則速度只取決於當前位置和歷史最好位置,速度本身沒有記憶性。假設一個粒子處在全局最好位置,它將保持靜止,其他粒子則飛向它的最好位置和全局最好位置的加權中心。粒子將收縮到當前全局最好位置。在加上第一部分後,粒子有擴展搜索空間的趨勢,這也使得的作用表現為針對不同的搜索問題,調整演算法的全局和局部搜索能力的平衡。較大時,具有較強的全局搜索能力;較小時,具有較強的局部搜索能力。
3)通常設c1=c2=2。Suganthan的實驗表明:c1和c2為常數時可以得到較好的解,但不一定必須等於2。Clerc引入收斂因子(constriction factor) K來保證收斂性。
通常取為4.1,則K=0.729.實驗表明,與使用慣性權重的PSO演算法相比,使用收斂因子的PSO有更快的收斂速度。其實只要恰當的選取和c1、c2,兩種演算法是一樣的。因此使用收斂因子的PSO可以看作使用慣性權重PSO的特例。
恰當的選取演算法的參數值可以改善演算法的性能。
3. PSO與其它演算法的比較
3.1 遺傳演算法和PSO的比較
1)共性:
(1)都屬於仿生演算法。
(2)都屬於全局優化方法。
(3)都屬於隨機搜索演算法。
(4)都隱含並行性。
(5)根據個體的適配信息進行搜索,因此不受函數約束條件的限制,如連續性、可導性等。
(6)對高維復雜問題,往往會遇到早熟收斂和收斂 性能差的缺點,都無法保證收斂到最優點。
2)差異:
(1)PSO有記憶,好的解的知識所有粒子都保 存,而GA(Genetic Algorithm),以前的知識隨著種群的改變被改變。
(2)PSO中的粒子僅僅通過當前搜索到最優點進行共享信息,所以很大程度上這是一種單共享項信息機制。而GA中,染色體之間相互共享信息,使得整個種群都向最優區域移動。
(3)GA的編碼技術和遺傳操作比較簡單,而PSO相對於GA,沒有交叉和變異操作,粒子只是通過內部速度進行更新,因此原理更簡單、參數更少、實現更容易。
(4)應用於人工神經網路(ANN)
GA可以用來研究NN的三個方面:網路連接權重、網路結構、學習演算法。優勢在於可處理傳統方法不能處理的問題,例如不可導的節點傳遞函數或沒有梯度信息。
GA缺點:在某些問題上性能不是特別好;網路權重的編碼和遺傳運算元的選擇有時較麻煩。
已有利用PSO來進行神經網路訓練。研究表明PSO是一種很有潛力的神經網路演算法。速度較快且有較好的結果。且沒有遺傳演算法碰到的問題。