1. 整理一下關於原碼反碼補碼筆記
一個數據表示時使用,第一位為符號位,剩餘的為有效位
字16位 1位符號 15有效數據位
int>整數 4個位元組32
-2 31-2 32-1
long>長整形8個位元組64一位符號63
-2 63-2 63-1
1000 0111 (-7)二轉十
機器數
機器數就是一個數在計算機中二進製表現形式
+3 0000 0011
+7 0000 0111
-5 1000 0101
機器數的真值
將帶符號位的機器數對應的真正數值稱為機器數的真值
0000 0011 = +3
0000 0111 = +7
1000 0101 = -5
原碼就是符號位加上真值的絕對值
求原碼:
34=00100010
原碼 -39 1 0 1 0 0 1 1 1
原碼 -55 1 0 1 1 0 1 1 1
正數:正數的反碼=源碼 如 +9:0000 1001 源碼=0000 1001 反
負數:符號位不變,其餘各位琢一取反,只有兩種狀態{0,1},即1->0 0->1
負數
負數的反碼是保持符號位不變,其餘各位直接取反
取反: 只有0 和 1兩種狀態,也就是 0 -> 1 , 1 -> 0
-3 1000 0011[原] = 1111 1100[反]
正數:正數的原碼=反碼=補碼 如+3 0000 0011 {原}=0000 0011{反}=0000 0011 {補}
負數:先求的反碼,在負數反碼的基礎上,加一
補碼需要在反碼的基礎上轉換得到
正數
正數的原碼 反碼 補碼 全部相同
+1 0000 0001[原] = 0000 0001[反] = 0000 0001[補]
負數
負數的補碼需要在反碼的基礎上,最後一位加 1;
-3 1111 1100[反] = 1111 1101[補
擴展
為什麼需要反碼和補碼?
在設計計算機時,只設計了加法器沒有設計減法器
5-3=5+(-3)
原碼
5=0000 0101 (原碼)
-3=1000 0011 (原碼)
0000 0101
1000 0011
1000 1000 結果(原碼)=-8
原碼不可以直接計算的!
反碼:解決了只設計加法器,使用加法器進行減法運算的問題;
缺點:正負相加0的表示不唯一
1-1=1+(-1)
1=0000 0001 {反}
-1=1000 0001 {原碼}
-1=1111 1110 {反碼}
0000 0001
1111 1110
1111 1111 {反碼}=1000 0000{原碼}=-0 負0
補碼{高位溢出}
1=0000 0001{補}
-1=1111 1111{補}
0000 0001
1111 1111
0000 0000
一個位元組8位,表達的范圍-2 7-2 7-1
32+12=44
44-12=32
44+(-12)=32
將補碼轉原碼
因為負數的補碼不能直接讀出結果,但是原碼可以,所以將補碼轉原碼,可以讀出負數的值
補碼>原碼
原則:==補碼的補碼
把補碼當原碼,求補碼
計算規則:符號位不變,其餘取反,加1;
ASCll編碼:最早的最重要的基本的英美文字的字元集
只使用了低7位二進制,其他的認為無效,它使用了0-127這128個碼位。剩下128個碼位留作擴展,採用順序存儲方式存儲字元
ISO-8859-*
使用ASCll 剩餘的碼位進行擴展
iso-8859-1專門對英語做的擴展 tomcat>默認採用iso-8859-1》utf-8
西歐國家較多,各個國家在ASCll基礎上,擴展形成了自己國家專用的編碼,最終形成了ISO-8859-*系列
GB2312
GB2312字集是簡體,6763個簡體漢字
BIG5
繁體字集
Unicode
字元集(簡稱為UCS)
GBK【936】
是簡繁字集,包括GB2312字集,BlG5字集合一些符號,共包括21003個字元。GBK編碼是GB2312的超級,向下完全兼容GB2312
UTF-8[65001]萬國碼
包含全世界所有國家需要用到的字元,是國際編碼,它對英文使用8位(即一個位元組),中午使用3個位元組
ANSl
ANSl不是一種具體的編碼
系統默認的編碼決定,如果系統的默認的編碼是GBK> ANSl就代表 GBK
認識ASCll碼表
常用:0-9 A-Z a-z對應的ASCll碼分別為:48-57,65-90,97-122
0>48
A>65
a>97
2. 計算機源碼,反碼,補碼之間怎麼計算
轉換方法:
如果是正數或零,則首位為 0,補碼=原碼=反碼。
否則,首位為 1,數值位取反加一,即可實現「補碼與原碼」互換。
例如:
對 1111 1001 取反,為 1000 0110,再加一,得:1000 0111。
對 1000 0111 取反,為 1111 1000,再加一,得:1111 1001。
這說明,補碼 ←→ 原碼,方法是相同的。
3. 一個數的原碼,反碼,補碼怎麼算
計算機中的存儲系統都是用2進制儲存的,對我們輸入的每一個信息它都會自動轉變成二進制的形式,而二進制在存儲的時候就會用到原碼,反碼和補碼例如:輸入25原碼是:0000000000011001反碼: 1111111111100110 補碼: 1111111111100111
數值在計算機中表示形式為機器數,計算機只能識別0和1,使用的是二進制,而在日常生活中人們使用的是十進制,"正如亞里士多德早就指出的那樣,今天十進制的廣泛採用,只不過我們絕大多數人生來具有10個手指頭這個解剖學事實的結果.盡管在歷史上手指計數(5,10進制)的實踐要比二或三進制計數出現的晚. "(摘自<<數學發展史>>有空大家可以看看哦~,很有意思的).為了能方便的與二進制轉換,就使用了十六進制(2 4)和八進制(23).下面進入正題.
數值有正負之分,計算機就用一個數的最高位存放符號(0為正,1為負).這就是機器數的原碼了.假設機器能處理的位數為8.即字長為1byte,原碼能表示數值的范圍為
(-127~-0 +0~127)共256個.
有了數值的表示方法就可以對數進行算術運算.但是很快就發現用帶符號位的原碼進行乘除運算時結果正確,而在加減運算的時候就出現了問題,如下: 假設字長為8bits
( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 顯然不正確.
因為在兩個整數的加法運算中是沒有問題的,於是就發現問題出現在帶符號位的負數身上,對除符號位外的其餘各位逐位取反就產生了反碼.反碼的取值空間和原碼相同且一一對應. 下面是反碼的減法運算:
( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10
(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有問題.
( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正確
問題出現在(+0)和(-0)上,在人們的計算概念中零是沒有正負之分的.(印度人首先將零作為標記並放入運算之中,包含有零號的印度數學和十進制計數對人類文明的貢獻極大).
於是就引入了補碼概念. 負數的補碼就是對反碼加一,而正數不變,正數的原碼反碼補碼是一樣的.在補碼中用(-128)代替了(-0),所以補碼的表示範圍為:
(-128~0~127)共256個.
注意:(-128)沒有相對應的原碼和反碼, (-128) = (10000000) 補碼的加減運算如下:
( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)補 + (11111111)補 = (00000000)補 = ( 0 ) 正確
( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 補+ (11111110) 補= (11111111)補 = ( -1 ) 正確
所以補碼的設計目的是:
⑴使符號位能與有效值部分一起參加運算,從而簡化運算規則.
⑵使減法運算轉換為加法運算,進一步簡化計算機中運算器的線路設計
所有這些轉換都是在計算機的最底層進行的,而在我們使用的匯編、C等其他高級語言中使用的都是原碼