Ⅰ cygwin 中如何安裝arm-linux-gcc交叉編譯器
交叉編譯工具鏈作為嵌入式Linux開發的基礎,直接影響到嵌入式開發的項目進度和完成質量。由於目前大多數開發人員使用Windows作為嵌入式開發的宿主機,在Windows中通過安裝VMware等虛擬機軟體來進行嵌入式Linux開發,這樣對宿主機的性能要求極高。Cygwin直接作為Windows下的軟體完全能滿足嵌入式Linux的開發工作,對硬體的要求低及方便快捷的特點成為嵌入式開發的最佳選擇。
目前網路上Cygwin下直接可用的交叉編譯器寥寥無幾且版本都比較低,不能滿足開源軟體對編譯器版本依賴性的要求(如低版本工具鏈編譯U-Boot出現軟浮點問題等);Crosstool等交叉工具鏈製作工具也是更新跟不上自由軟體版本的進度;同時系統介紹Cygwin下製作交叉編譯器方面的資料很少。針對上述情況,基於最新版gcc等自由軟體構建Cygwin下的交叉編譯器顯得尤為迫切和重要。
構建前准備工作
首先Cygwin下必須保證基本工具比如make}gcc等來構建bootstrap-gcc編譯器,這可以在安裝Cygwin時選擇安裝。參照gcc等安裝說明文檔來在Cygwin下查看是否已經安裝,如輸入gcc --v等。
源碼下載
gcc-4.5.0的編譯需mpc的支持,而mpc又依賴gmp和mpfr庫。從各個項目官方網站上下載的最新的源碼:
binutils-2.20. l .tar.bz2
gmp-S.O. l .tar.bz2
mpc-0.8.2.tar.gz
mpfr-3.O.O.tar.bz2
gcc-4.S.O.tar.bz2
linux-2.6.34.tar.bz2
glibc-2.11.2.tar.bz2
glibc-ports-2. l l .tar.bz2
gdb-7. l.tar.bz2
設置環境變數
HOST:工具鏈要運行的目標機器;BUILD:用來建立工具鏈的機器;TARGET工具鏈編譯產生的二進制代碼可以運行的機器。
BUILD=i686-pc-cygwin
HOST=i686-pc-cygwin TARGET=arm-linux
SYSROOT指定根目錄,$PREFIX指定安裝目錄。目標系統的頭文件、庫文件、運行時對象都將被限定在其中,這在交叉編譯中有時很重要,可以防止使用宿主機的頭文件和庫文件。本文首選$SYSROOT為安裝目錄,$PREFIX主要作為glibc庫安裝目錄。
SYSROOT=/cross-root
PREFIX=/cross-root/arm-linux
由於GCC-4.5.0需要mpfr,gmp,mpc的支持,而這三個庫又不需要交叉編譯,僅僅是在編譯交叉編譯鏈時使用,所以放在一個臨時的目錄。
TEMP_PREFIX=/build-temp
控制某些程序的本地化的環境變數:
LC ALL=POSIX
設置環境變數:
PATH=$SYSROOT/bin:兒in:/usr/bin
設置編譯時的線程數f31減少編譯時間:
PROCS=2
定義各個軟體版本:
BINUTILS V=2.20.1
GCC V=4.5.0
GMP V=5.0.1
MPFR V=3.0.0
MPC V二0.8.2
LINUX V二2.6.34
GLIBC V=2.11.2
GLIBC-PORTS V=2.11
GDB V=7.1
構建過程詳解
鑒於手工編譯費時費力,統一把構建過程寫到Makefile腳本文件中,把其同源碼包放在同一目錄下,執行make或順次執行每個命令即可進行無人值守的編譯安裝交叉工具
鏈。以下主要以Makefile執行過程為主線進行講解。
執行「make」命令實現全速運行
可在Cygwin的Shell環境下執行「make>make.log 2>&1」命令把編譯過程及出現的錯誤都輸出到make.log中,便於查找:
all:prerequest install-deps install-cross-stage-one install-
cross-stage-two
預處理操作
"make prerequest',命令實現單步執行的第一步,實現輸出變數、建立目錄及解壓源碼包等操作。0'set十h」關閉bash的Hash功能,使要運行程序的時候,shell將總是搜索PATH里的目錄[4]。這樣新工具一旦編譯好,shell就可以在$(SYSROOT)/bin目錄里找到: prerequest:
set +h&&mkdir -p $(SYSROOT)/bin&&
mkdir -p $(PREFIX)/include&&
mkdir -p $(TEMP一REFIX)&&
export PATH LCes ALL&&
tar -xvf gmp-$(GMP_V).tar.bz2&&
tar -xvf mpfr-$(MPFR_V).tar.bz2&&
tar -xvf mpc-$(MPC_V).tar.gz&&
tar -xvf binutils-$(BINUTILS_V).tar.bz2&&
tar -xvf gcc-$(GCC_V).tar.bz2&&
tar -xvf linux-$(LINUX_V).tar.bz2&&
tar -xvf glibc-$(GLIBC_V).tar.bz2&&
tar -xvf glibc-ports-$(GLIBC-PORTS_V).tar.bz2&&
my glibc-ports-$(GLIBC-PORTS_V)
glibc-$(GLIBC_V)/ports&&
tar -xvf gdb-$(GDB V).tar.bz2
非交叉編譯安裝gcc支持包mpc
00make install-deps」命令實現單步執行的第二步,實現mpc本地編譯,mpc依賴於gmp和mpfr
install-deps:gmp mpfr mpc
gmp:gmp-$(GMP_V)
mkdir -p build/gmp&&cd build/gmp&&
../../gmp-*/configure
--disable-shared --prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
mpfr:mpfr-$(MPFR_V)
mkdir -p b-uild/mpfr&&cd build/mpfr&&
../..//mpfr-*/configure
LDF'LAGS="-Wl,-search_paths_first」--disable-shared
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS) all&&$(MAKE) install
mpc: mpc-$(MPC_V) gmp mpfr
mkdir -p build/mpc&&cd build/mpc&&
../../mpc-*/configure
--with-mpfr=$(TEMP PREFIX)
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
交叉編譯第一階段
"make install-cross-stage-one',命令實現單步執行的第三步,編譯安裝binutils,bootstrap-gcc和獲取Linux內核頭文件:
install-cross-stage-one:cross-binutils cross-gcc get-kernel-headers
編譯安裝binutils
cross-binutils: binutils-$(BINUTILS_ V)
mkdir -p build/binutils&&cd build/binutils&&
../..//binutils-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-nls&&
$(MAKE)j$(PROCS)&&$(MAKE) install
編譯安裝bootstrap-gcc。使用一disable-shared參數的意思是不編譯和安裝libgcc_ eh.a文件。glibc軟體包依賴這個庫,因為它使用其內部的一lgcc_eh來創建系統[6]。這種依賴
性,可通過建立一個指向libgcc.a符號鏈接得到滿足,因為該文件最終將含有通常在libgcc- eh.a中的對象(也可通過補丁文件實現)。
cross-gcc:gcc-$(GCC_V)
mkdir -p build/gcc&&cd build/gcc&&
二//gcc-*/configure
--target=$(TARGET)--prefix=$(SYSROOT)
--disable-nls --disable-shared --disable-multilib
--disable-decimal-float--disable-threads
--disable-libmudflap --disable-libssp
--disable-libgomp --enable-languages=c
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) -j$(PROCS)&&$(MAICE) install&&
In -vs libgcc.a'arm-linux-gcc -print-libgcc-file-name I
sed's/libgcc/& eh/'}
獲取Linux內核頭文件:
get-kernel-headersainux-$(LINUX_V)
cd linux-$(LINUX_V)&&
$(MAICE) mrproper&&$(MAKE) headers check&&
$(MAKE) ARCH=arm&&
INSTALLes HDR_ PATH=dest headers_ install&&
find dest/include
(-name .install一。-name ..installNaNd)-delete&&
cp -rv desdinclude/* $(PREFIX)/include
交叉編譯第二階段
編譯安裝glibc、重新編譯安裝binutils、完整編譯安裝gcc和編譯安裝gdb o "make install-cross-stage-two',命令實現單步執行的第四步: install-cross-stage-two:cross-glibc cross-rebinutils cross-g++ cross-gdb
編譯安裝glibca glib。的安裝路徑特意選為$(PREFIX),與gcc更好找到動態鏈接庫也有關系,選在$(SYSROOT)提示找不到crti.o; glibc已經不再支持i386; glibc對ARM等的處理器的支持主要通過glibc-ports包來實現;正確認識大小寫敏感(Case Sensitive)和大小寫不敏感(CaseInsensitive)系統,大小寫敏感問題主要影響到glibc,是交叉編譯glibc成功的關鍵:Cygwin幫助手冊中可知Cygwin是默認大小寫不敏感的n},但是UNIX系統是大小寫敏感的,這也是Cygwin和UNIX類系統的一個區別。通過作者自行參考製作的glibc-2.11.2-cygwin.patch補T使glibc變為Case-Insensitive,此補丁主要是對大小寫敏感問題改名來實現。
交叉編譯過程中安裝的鏈接器,在安裝完Glibc以前都無法使用。也就是說這個配置的forced unwind支持測試會失敗,因為它依賴運行中的鏈接器。設置libc_ cvforced unwind=yes這個選項是為了通知configure支持force-unwind,而不需要進行測試。libc cv_c_cleanup=yes類似的,在configure腳本中使用libc_cv_c cleanup=yes,以便配置成跳過測試而支持C語言清理處理。
cross-glibc:glibc-$(GLIBC_V)
cd glibc-$(GLIBC_V)&&
patch -Np 1 –i...//glibc-2.11.2-cygwin.patch&&
cd..&&mkdir -p build/glibc&&
cd build/glibc&&
echo"libc cv_forcedes unwind=yes">config.cache&&
echo "libc cv_c_cleanup=yes">>config.cache&&
echo "libc cv_arm_tls=yes">>config.cache&&
../../glibc-*/configure --host=$(TARGET)
--build=$(../OneScheme/glibc-2.11.2/scripts/config.guess)
--prefix=$(PREFIX)--disable-profile
--enable-add-ons --enable-kernel=2.6.22.5
--with-headers=$(PREFIX)/include
--cache-file=config.cache&&
$(MAKE)&&$(MAKE) install
重新編譯安裝binutils。編譯之前要調整工具鏈,使其
指向新生成的動態連接器。
調整工具鏈:
SPECS=
'dirname $(arm-linux-gcc -print-libgcc-file-name)'/specs
arm-linux-gcc -mpspecs
sed -e 's@/lib(64)\?/ld@$(PREFTX)&@g' -e ,}/}}*cPP}$/{n;s,$,-isystem $(PREFIX)/include,}"
>$SPECS
echo "New specs file is: $SPECS"
unset SPECS
測試調整後工具鏈:
echo 'main(川』>mmy.c
arm-linux-gcc
-B/cross-root/arm-linux/lib mmy.c
readelf -1 a.out I grep』:/cross-roobarm-linux'
調整正確的輸出結果:
[Requesting program interpreter: /tools/lib/ld-linux.so.2j
一切正確後刪除測試程序:
rm -v mmy.c a.out
重新編譯binutils。指定--host,--build及--target,否則配置不成功,其config.guess識別能力不如gcc做的好。
cross-rebinutils: binutils-$(BINUTILS_V)
mkdir -p build/rebinutils&&
cd build/rebinutils&&CC="$(TARGET)-gcc
-B/cross-roodarm-linux/lib/"&&AR=$(TARGET)-ar&&
RANLIB=$(TARGET)-ranlib&&../..//binutils-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--disable-nls
--with-lib-path=$(PREFIX)/lib&&
$(MAKE)--$(PROCS)&&$(MAKE) install
高於4.3版的gcc把這個編譯當作一個重置的編譯器,並且禁止在被一prefix指定的位置搜索startfiles。因為這次不是重置的編譯器,並且$(SYSROOT)目錄中的startfiles對於創
建一個鏈接到$$(SYSROOT)目錄庫的工作編譯器很重要,所以我們使用下面的補丁,它可以部分還原gcc的老功能tai . patch -Npl –i../gcc-4.5.0-startfiles_fix-l.patch
在正常條件下,運行gcc的fixincludes腳本,是為了修復可能損壞的頭文件。它會把宿主系統中已修復的頭文件安裝到gcc專屬頭文件目錄里,通過執行下面的命令,可以抑
制fixincludes腳本的運行[9](此時目錄為/gcc-4.5.0)。
cp -v gcc/Makefile.in{,.orig}
sed 's@\./fixinc\.sh@-c true@'
gcc/Makefile.in.orig > gcc/Makefile.in
下面更改gcc的默認動態鏈接器的位置,使用已安裝在/cross-root/ann-linux目錄下的鏈接器,這樣確保在gcc真實的編譯過程中使用新的動態鏈接器。即在編譯過程中創建的所有
二進制文件,都會鏈接到新的glibc文件
for file in
$(find gcc/config -name linux64.h-o -name linux.h –o -name sysv4.h)
do cp -uv $file{,.orig}
sed -a 's@/lib(64)?(32)?/Id@/cross-root/arm-linux&@g』-e's@/usr@/cross-rootlarm-linux@g' $file.orig>$file echo『
#undef STANDARD INCLUDE DIR
#define STANDARD_ INCLUDE DIR "/cross-root/arm-linux/include"
#define STANDARD STARTFILE PREFIX 1 "/cross-root/arm-linux/lib"
#define STANDARD_ STARTFILE_ PREFIX_ 2」」』>>$file
touch $file.orig done
完整編譯安裝gcc。最好通過指定--libexecdir更改libexecdir到atm-linux目錄下。--with-local-prefix選項指定gcc本地包含文件的安裝路徑此處設為$$(PREFIX),安裝後就會在內核頭文件的路徑下。路徑前指定$(Pwd)則以當前路徑為基點,不指定則默認以/home路徑為基點,這點要注意。
cross-g++:gcc-$(GCC-)
mkdir -p build/g十+&&cd build/g++&&
CC="$(TARGET)-gcc AR=$(TARGET)-ar&&
-B/cross-roodarm-linux/lib/"&&
RANLIB=$(TARGET)-ranlib&&
..//gcc-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--with-local-prefix=$(PREFIX)
--enable-clocale=gnu --enable-shared
--enable-threads=posix --enable -cxa_atexit
--enable-languages=c,c++--enable-c99
--enable-long-long --disable-libstdcxx-pch
--disable-libunwind-exceptions
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) LD_IBRARY_ATH=
$(pwd)/$(../../gcc-4.5.0/config.guess)/libgcc&&
$(MAKE) install
編譯安裝gdb,至此完成整個工具鏈的製作。
cross-gdb: gdb-$(GDB V)
mkdir -p build/gdb&&cd build/gdb&&
../../gdb-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-werror&&
$(MAKE)-j$(PROCS)&&$(MAKE) install
「make clean」命令清除編譯生成的文件和創建解壓的文件夾
.PHONY:clean
dean:
rm -fr $(TEMP_PREFIX) build
binutils-$(BINUTIL,S_V) gcc-$(GCC_V)
glibc-$(NEWL.IB_V) gdb-$(GDB_V)
gmp-$(GMP_V) mpc-$(MPC_V) mpfr-$(MPFR_V)
工具鏈測試
命令行中輸入以下內容:
echo 'main(){}』>mmy.c
arm-linux-gcc -o mmy.exe mmy.c
file mmy.exe
運行正常的結果:
mmy.exe: ELF 32-bit LSB executable, ARM, version 1,for GNU/Linux 2.6.22, dynamically linked (uses shared libs),not stripped.
Ⅱ lpc2103 報錯aeabi_uidiv
解決思路:
1、這個錯誤提示說明是一個未定義引用的錯誤,根據__aeabi_uidivmod,和__aeabi_uidiv猜想應該是除法實現的問題(為什麼就能得出是除法實現的問題?根據英文名嗎?可是我查了下,沒有這個英文。)。
2、這里用到了lib1funcs.S這個除法庫文件,於是在裡面搜索__aeabi_uidiv和__aeabi_uidivmod,找不到這兩個關鍵字的定義。
說明應該是4.3.2版本的編譯工具需要找這兩個關鍵字的定義,但是找不到。
3、猜測應該是這個lib1funcs.S是比較老版本的庫文件,可是這個較新版本的去哪找呢,除法運算在u-boot和Linux內核里肯定實現了,就到這兩個裡面去找這個文件。
4、4.3.2編譯通過的兩個項目版本分別是u-boot-2012.04.01以及linux-3.4.2,就到這兩個項目中找,你會發現u-boot裡面沒有這個文件,u-boot肯定實現了,但是不是用這個來實現的,我們到linux內核里找:
find /work/projects/linux-3.4.2 -name "lib1funcs.S"
搜索結果:
./arch/arm/lib/lib1funcs.S
./arch/arm/boot/compressed/lib1funcs.S
登錄後復制
5、/work/system/linux-3.4.2/arch/arm/lib/lib1funcs.S,這個文件應該就是我們找的庫文件。
把他到項目里,然後make。
編譯結果:
arm-linux-gcc -c -o lib1funcs.o lib1funcs.S
lib1funcs.S:36:27: error: linux/linkage.h: No such file or directory
lib1funcs.S:37:27: error: asm/assembler.h: No such file or directory
lib1funcs.S:38:24: error: asm/unwind.h: No such file or directory
Makefile:11: recipe for target 'lib1funcs.o' failed
make: *** [lib1funcs.o] Error 1
登錄後復制
提示我們找不到這些頭文件,對比以前的lib1funcs.S不需要這些頭文件。
所以我們把頭文件注釋掉:
35 /*
36 #include <linux/linkage.h>
37 #include <asm/assembler.h>
38 #include <asm/unwind.h>
39 */
登錄後復制
6、再次編譯,出現如下錯誤:
arm-linux-gcc -c -o lib1funcs.o lib1funcs.S
lib1funcs.S: Assembler messages:
lib1funcs.S:181: Error: bad instruction `entry(__udivsi3)'
lib1funcs.S:182: Error: bad instruction `entry(__aeabi_uidiv)'
lib1funcs.S:183: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:207: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:208: Error: bad instruction `endproc(__udivsi3)'
lib1funcs.S:209: Error: bad instruction `endproc(__aeabi_uidiv)'
lib1funcs.S:211: Error: bad instruction `entry(__umodsi3)'
lib1funcs.S:212: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:226: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:227: Error: bad instruction `endproc(__umodsi3)'
lib1funcs.S:229: Error: bad instruction `entry(__divsi3)'
lib1funcs.S:230: Error: bad instruction `entry(__aeabi_idiv)'
lib1funcs.S:231: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:268: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:269: Error: bad instruction `endproc(__divsi3)'
lib1funcs.S:270: Error: bad instruction `endproc(__aeabi_idiv)'
lib1funcs.S:272: Error: bad instruction `entry(__modsi3)'
lib1funcs.S:273: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:293: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:294: Error: bad instruction `endproc(__modsi3)'
lib1funcs.S:356: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:357: Error: bad instruction `unwind(.pad #4)'
lib1funcs.S:358: Error: bad instruction `unwind(.save {lr})'
lib1funcs.S:363: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:364: Error: bad instruction `endproc(Ldiv0)'
Makefile:11: recipe for target 'lib1funcs.o' failed
make: *** [lib1funcs.o] Error 1
登錄後復制
應該是去掉頭文件引起的編譯器對定義不理解。
對比老版本的lib1funcs開頭有一些宏定義我們先加上:
#define ALIGN .align 4,0x90
#define __LINUX_ARM_ARCH__ 1
#define ENTRY(name) \
.globl name; \
ALIGN; \
name:
登錄後復制
其中有entry的宏定義,我們可以猜想這些都是在頭文件里的宏定義,其實你去linux內核里找這個頭文件#include <linux/linkage.h>在這里就可以找到entry的宏定義。
7、再次編譯,出現錯誤:
[email protected]:/work/test$ make
arm-linux-gcc -c -o lib1funcs.o lib1funcs.S
lib1funcs.S: Assembler messages:
lib1funcs.S:192: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:216: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:217: Error: bad instruction `endproc(__udivsi3)'
lib1funcs.S:218: Error: bad instruction `endproc(__aeabi_uidiv)'
lib1funcs.S:221: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:235: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:236: Error: bad instruction `endproc(__umodsi3)'
lib1funcs.S:240: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:277: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:278: Error: bad instruction `endproc(__divsi3)'
lib1funcs.S:279: Error: bad instruction `endproc(__aeabi_idiv)'
lib1funcs.S:282: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:302: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:303: Error: bad instruction `endproc(__modsi3)'
lib1funcs.S:365: Error: bad instruction `unwind(.fnstart)'
lib1funcs.S:366: Error: bad instruction `unwind(.pad #4)'
lib1funcs.S:367: Error: bad instruction `unwind(.save {lr})'
lib1funcs.S:372: Error: bad instruction `unwind(.fnend)'
lib1funcs.S:373: Error: bad instruction `endproc(Ldiv0)'
Makefile:11: recipe for target 'lib1funcs.o' failed
make: *** [lib1funcs.o] Error 1
登錄後復制
unwind() 和unwind()的宏定義老版本里沒有,怎麼辦呢?
全部注釋掉:
#UNWIND(.fnend)
#ENDPROC(__modsi3)
登錄後復制
8、再次編譯,出現錯誤:
[email protected]:/work/test$ make
arm-linux-gcc -c -o lib1funcs.o lib1funcs.S
#arm-linux-ld -Ttext 0 -Tdata 0x30000000 start.o led.o uart.o init.o main.o -o sdram.elf
arm-linux-ld -T sdram.lds start.o led.o uart.o init.o main.o exception.o interrupt.o timer.o nor_flash.o my_printf.o string_utils.o lib1funcs.o -o sdram.elf
my_printf.o: In function `out_num':
my_printf.c:(.text+0x120): undefined reference to `__aeabi_uidivmod'
lib。
LPC2103
LP