導航:首頁 > 源碼編譯 > java排序演算法有什麼用

java排序演算法有什麼用

發布時間:2023-09-17 05:48:45

❶ 用java冒泡排序和遞歸演算法

冒泡排序

(1)基本思想:在要排序的一組數中,對當前還未排好序的范圍內的全部數,自上而下對相鄰的兩個數依次進行比較和調整,讓較大的數往下沉,較小的往上冒。即:每當兩相鄰的數比較後發現它們的排序與排序要求相反時,就將它們互換。

(2)用java實現

ublicclassbubbleSort{

publicbubbleSort(){

inta[]={1,54,6,3,78,34,12,45};

inttemp=0;

for(inti=0;i<a.length;i++){

for(intj=i+1;j<a.length;j++){

if(a[i]>a[j]){

temp=a[i];

a[i]=a[j];

a[j]=temp;

}

}

}

for(inti=0;i<a.length;i++)

System.out.println(a[i]);

}

}

遞歸

遞歸演算法,就是程序的自身調用。表現在一段程序中往往會遇到調用自身的那樣一種coding策略,可以利用大道至簡的思想,把一個大的復雜的問題層層轉換為一個小的和原問題相似的問題來求解的這樣一種策略。能看到我們會用很少的語句解決了非常大的問題,所以遞歸策略的最主要體現就是小的代碼量解決了非常復雜的問題。

java代碼:

packagecom.cjq.filedown;

publicclassFab{

publicstaticvoidmain(Stringargs[]){
System.out.println(fab(5));
}

privatestaticintfab(intindex){
if(index==1||index==2){
return1;
}else{
returnfab(index-1)+fab(index-2);
}
}
}

❷ java中冒泡排序演算法的詳細解答以及程序

實例說明

用冒泡排序方法對數組進行排序。

實例解析

交換排序的基本思想是兩兩比較待排序記錄的關鍵字,發現兩個記錄的次序相反時即進行交換,直到沒有反序的記錄為止。

應用交換排序基本思想的主要排序方法有冒泡排序和快速排序。

冒泡排序

將被排序的記錄數組 R[1..n] 垂直排列,每個記錄 R[i] 看做是重量為 R[i].key 的氣泡。根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組 R 。凡掃描到違反本原則的輕氣泡,就使其向上「漂浮」。如此反復進行,直到最後任何兩個氣泡都是輕者在上,重者在下為止。

(1) 初始, R[1..n] 為無序區。

(2) 第一趟掃描,從無序區底部向上依次比較相鄰的兩個氣泡的重量,若發現輕者在下、重者在上,則交換二者的位置。即依次比較 (R[n],R[n-1]) 、 (R[n-1],R[n-2]) 、 … 、 (R[2],R[1]); 對於每對氣泡 (R[j+1],R[j]), 若 R[j+1].key<R[j].key, 則交換 R[j+1] 和 R[j] 的內容。

第一趟掃描完畢時,「最輕」的氣泡就飄浮到該區間的頂部,即關鍵字最小的記錄被放在最高位置 R[1] 上。

(3) 第二趟掃描,掃描 R[2..n]。掃描完畢時,「次輕」的氣泡飄浮到 R[2] 的位置上 …… 最後,經過 n-1 趟掃描可得到有序區 R[1..n]。

注意:第 i 趟掃描時, R[1..i-1] 和 R[i..n] 分別為當前的有序區和無序區。掃描仍是從無序區底部向上直至該區頂部。掃描完畢時,該區中最輕氣泡漂浮到頂部位置 R[i] 上,結果是 R[1..i] 變為新的有序區。

冒泡排序演算法

因為每一趟排序都使有序區增加了一個氣泡,在經過 n-1 趟排序之後,有序區中就有 n-1 個氣泡,而無序區中氣泡的重量總是大於等於有序區中氣泡的重量,所以整個冒泡排序過程至多需要進行 n-1 趟排序。

若在某一趟排序中未發現氣泡位置的交換,則說明待排序的無序區中所有氣泡均滿足輕者在上,重者在下的原則,因此,冒泡排序過程可在此趟排序後終止。為此,在下面給出的演算法中,引入一個布爾量 exchange, 在每趟排序開始前,先將其置為 FALSE 。若排序過程中發生了交換,則將其置為 TRUE 。各趟排序結束時檢查 exchange, 若未曾發生過交換則終止演算法,不再進行下趟排序。


具體演算法如下:

void BubbleSort(SeqList R){
//R(1..n) 是待排序的文件,採用自下向上掃描,對 R 做冒泡排序
int i,j;
Boolean exchange; // 交換標志
for(i=1;i<n;i++){ // 最多做 n-1 趟排序
exchange=FALSE; // 本趟排序開始前,交換標志應為假
for(j=n-1;j>=i;j--) // 對當前無序區 R[i..n] 自下向上掃描
if(R[j+1].key<R[j].key){ // 交換記錄
R[0]=R[j+1]; //R[0] 不是哨兵,僅做暫存單元
R[j+1]=R[j];
R[j]=R[0];
exchange=TRUE; // 發生了交換,故將交換標志置為真
}
if(!exchange) // 本趟排序未發生交換,提前終止演算法
return;
} //endfor( 外循環 )
}//BubbleSort

publicclassBubbleSort{

publicstaticvoidmain(String[]args){
//TODOAuto-generatedmethodstub
List<Integer>lstInteger=newArrayList<Integer>();
lstInteger.add(1);
lstInteger.add(1);
lstInteger.add(3);
lstInteger.add(2);
lstInteger.add(1);
for(inti=0;i<lstInteger.size();i++){
System.out.println(lstInteger.get(i));
}
System.out.println("排序之後-----------------");
lstInteger=sortList(lstInteger);
for(inti=0;i<lstInteger.size();i++){
System.out.println(lstInteger.get(i));
}

}

publicstaticList<Integer>sortList(List<Integer>lstInteger){
inti,j,m;
booleanblChange;
intn=lstInteger.size();

for(i=0;i<n;i++){
blChange=false;
for(j=n-1;j>i;j--){
if(lstInteger.get(j)<lstInteger.get(j-1)){
m=lstInteger.get(j-1);
lstInteger.set(j-1,lstInteger.get(j));
lstInteger.set(j,m);
blChange=true;
}
}
if(!blChange){
returnlstInteger;
}
}
returnlstInteger;
}
}
歸納注釋

演算法的最好時間復雜度:若文件的初始狀態是正序的,一趟掃描即可完成排序。所需的關鍵字比較次數C和記錄移動次數M均達到最小值,即C(min)=n-1,M(min)=0。冒泡排序最好的時間復雜度為O(n)。

演算法的最壞時間復雜度:若初始文件是反序的,需要進行n-1趟排序。每趟排序要進行n-1次關鍵字的比較(1<=i<=n-1),且每次比較都必須移動記錄3次。在這種情況下,比較和移動次數均達到最大值,即C(max)=n(n-1)/2=O(n^2),M(max)=3n(n-1)/2=O(n^2)。冒泡排序的最壞時間復雜度為O(n^2)。

演算法的平均時間復雜度為O(n^2)。雖然冒泡排序不一定要進行n-1趟,但由於它的記錄移動次數較多,故平均時間性能比直接插入排序要差得多。

演算法穩定性:冒泡排序是就地排序,且它是穩定的。

演算法改進:上述的冒泡排序還可做如下的改進,①記住最後一次交換發生位置lastExchange的冒泡排序(該位置之前的相鄰記錄均已有序)。下一趟排序開始時,R[1..lastExchange-1]是有序區,R[lastExchange..n]是無序區。這樣,一趟排序可能使當前有序區擴充多個記錄,從而減少排序的趟數。②改變掃描方向的冒泡排序。冒泡排序具有不對稱性。能一趟掃描完成排序的情況,只有最輕的氣泡位於R[n]的位置,其餘的氣泡均已排好序,那麼也只需一趟掃描就可以完成排序。如對初始關鍵字序列12、18、42、44、45、67、94、10就僅需一趟掃描。需要n-1趟掃描完成排序情況,當只有最重的氣泡位於R[1]的位置,其餘的氣泡均已排好序時,則仍需做n-1趟掃描才能完成排序。比如對初始關鍵字序列:94、10、12、18、42、44、45、67就需7趟掃描。造成不對稱性的原因是每趟掃描僅能使最重氣泡「下沉」一個位置,因此使位於頂端的最重氣泡下沉到底部時,需做n-1趟掃描。在排序過程中交替改變掃描方向,可改進不對稱性

❸ java中快速排序的演算法舉個例子

package person.test;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Random;

/**
* class name: RapidSort
* description: Java快速排序法:數組和集合
* @author Jr
*
*/
public class RapidSort {
private Random ran = new Random(); // 聲明一個全局變數ran,用來隨機生成整數

/**
* method name: sortArray
* description: 對數組的快速排序,只能用於int[]類型的數組
* @return
*/
private void sortArray() {
int[] array = new int[10]; // 聲明數組長度為10
for (int i = 0 ; i < array.length; i++) {
array[i] = ran.nextInt(10) + 1; // 數組賦值
}
Arrays.sort(array);
System.out.println(Arrays.toString(array));
}

/**
* method name: sortList
* description: 對集合的快速排序,可以用於List<Object>類型數組,
* 隱含意思就是對所有類型數組都適用
* @return
*/
private void sortList() {
List<Integer> list = new ArrayList<Integer>();
for (int i = 0 ; i < 10; i++) {
list.add(ran.nextInt(10) + 1); // 給集合賦10個值
}
Collections.sort(list);
System.out.println(list);
}

public static void main(String[] args) {
RapidSort rs = new RapidSort();
rs.sortArray();
rs.sortList();
}
}

❹ java快速排序簡單代碼

.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序演算法是《數據結構與演算法》中最基本的演算法之一。排序演算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序演算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸並排序、快速排序、堆排序、基數排序等。以下是快速排序演算法:

快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞譽渣宏狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序梁灶通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

快速排序又是一種分而治之思想在排序演算法上的典型應用。本質上來看,快速排序應該算是在冒慶冊泡排序基礎上的遞歸分治法。

快速排序的名字起的是簡單粗暴,因為一聽到這個名字你就知道它存在的意義,就是快,而且效率高!它是處理大數據最快的排序演算法之一了。雖然 Worst Case 的時間復雜度達到了 O(n?),但是人家就是優秀,在大多數情況下都比平均時間復雜度為 O(n logn) 的排序演算法表現要更好,可是這是為什麼呢,我也不知道。好在我的強迫症又犯了,查了 N 多資料終於在《演算法藝術與信息學競賽》上找到了滿意的答案:

快速排序的最壞運行情況是 O(n?),比如說順序數列的快排。但它的平攤期望時間是 O(nlogn),且 O(nlogn) 記號中隱含的常數因子很小,比復雜度穩定等於 O(nlogn) 的歸並排序要小很多。所以,對絕大多數順序性較弱的隨機數列而言,快速排序總是優於歸並排序。
1. 演算法步驟
從數列中挑出一個元素,稱為 "基準"(pivot);

重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作;

遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序;
2. 動圖演示
代碼實現 JavaScript 實例 function quickSort ( arr , left , right ) {
    var len = arr. length ,
        partitionIndex ,
        left = typeof left != 'number' ? 0 : left ,
        right = typeof right != 'number' ? len - 1 : right ;

    if ( left

❺ Java數組排序 幾種排序方法詳細一點

JAVA中在運用數組進行排序功能時,一般有四種方法:快速排序法、冒泡法、選擇排序法、插入排序法。

快速排序法主要是運用了Arrays中的一個方法Arrays.sort()實現。

冒泡法是運用遍歷數組進行比較,通過不斷的比較將最小值或者最大值一個一個的遍歷出來。

選擇排序法是將數組的第一個數據作為最大或者最小的值,然後通過比較循環,輸出有序的數組。

插入排序是選擇一個數組中的數據,通過不斷的插入比較最後進行排序。下面我就將他們的實現方法一一詳解供大家參考。

<1>利用Arrays帶有的排序方法快速排序

publicclassTest2{
publicstaticvoidmain(String[]args){
int[]a={5,4,2,4,9,1};
Arrays.sort(a);//進行排序
for(inti:a){
System.out.print(i);
}
}
}

<2>冒泡排序演算法

publicstaticint[]bubbleSort(int[]args){//冒泡排序演算法
for(inti=0;i<args.length-1;i++){
for(intj=i+1;j<args.length;j++){
if(args[i]>args[j]){
inttemp=args[i];
args[i]=args[j];
args[j]=temp;
}
}
}
returnargs;
}

<3>選擇排序演算法

publicstaticint[]selectSort(int[]args){//選擇排序演算法
for(inti=0;i<args.length-1;i++){
intmin=i;
for(intj=i+1;j<args.length;j++){
if(args[min]>args[j]){
min=j;
}
}
if(min!=i){
inttemp=args[i];
args[i]=args[min];
args[min]=temp;
}
}
returnargs;
}

<4>插入排序演算法

publicstaticint[]insertSort(int[]args){//插入排序演算法
for(inti=1;i<args.length;i++){
for(intj=i;j>0;j--){
if(args[j]<args[j-1]){
inttemp=args[j-1];
args[j-1]=args[j];
args[j]=temp;
}elsebreak;
}
}
returnargs;
}

❻ JAVA 冒泡排序法的詳細解釋是什麼

冒泡排序的英文Bubble Sort,是一種最基礎的交換排序。

大家一定都喝過汽水,汽水中常常有許多小小的氣泡,嘩啦嘩啦飄到上面來。這是因為組成小氣泡的二氧化碳比水要輕,所以小氣泡可以一點一點向上浮動。而我們的冒泡排序之所以叫做冒泡排序,正是因為這種排序演算法的每一個元素都可以像小氣泡一樣,根據自身大小,一點一點向著數組的一側移動。

冒泡排序演算法的原理如下:

❼ java中的演算法,一共有多少種,哪幾種,怎麼分類。

就好比問,漢語中常用寫作方法有多少種,怎麼分類。

演算法按用途分,體現設計目的、有什麼特點
演算法按實現方式分,有遞歸、迭代、平行、序列、過程、確定、不確定等等
演算法按設計范型分,有分治、動態、貪心、線性、圖論、簡化等等

作為圖靈完備的語言,理論上」Java語言「可以實現所有演算法。
「Java的標准庫'中用了一些常用數據結構和相關演算法.

像apache common這樣的java庫中又提供了一些通用的演算法

❽ 常見的排序演算法哪個效率最高

快速排序法。

閱讀全文

與java排序演算法有什麼用相關的資料

熱點內容
msf埠遷移命令 瀏覽:880
工商app積分怎麼查詢 瀏覽:143
鐵路app怎麼買火車票 瀏覽:309
移魅族除的app怎麼添加 瀏覽:240
兔籠子大號加密 瀏覽:171
單片機程序燒錄操作成功 瀏覽:878
指標高拋低吸點位源碼 瀏覽:205
25匹壓縮機銅管 瀏覽:570
單片機單燈左移05 瀏覽:150
買伺服器練手什麼配置 瀏覽:783
伺服器被毀該怎麼辦 瀏覽:939
python私有庫 瀏覽:514
Python有中文嗎 瀏覽:736
麥塊的伺服器為什麼都進不去 瀏覽:474
新買的伺服器如何打開 瀏覽:35
安卓軟體游戲怎麼開發 瀏覽:319
用撲克擺愛心解壓神器怎麼擺 瀏覽:70
松下製冷壓縮機 瀏覽:275
pdf里怎麼修改文字 瀏覽:686
已保存文檔加密如何設置 瀏覽:413