導航:首頁 > 源碼編譯 > kmeans演算法學習向量量化

kmeans演算法學習向量量化

發布時間:2023-09-20 00:48:54

A. K均值演算法介紹

從沒有標記過的數據中學習稱之為非監督學習。
在非監督學習中,通過演算法來定義一些數據的結構,將數據分別聚合到這些子集中,這種演算法稱之為聚類演算法。

K均值 (K-means) 演算法是最常用的一種聚類演算法。


假設有槐閉運如上的數據集,可以看到只有輸入 ,沒有輸出 。

下面說明一下K均值演算法的過程

K均值演算法的代價函數為:

優化目標就是使用上面的代價函數最小化所有參數。

上述步驟中
第3步集群分配,是通過找到離樣本最近的聚類中心點來最小化代價函數;
第4步移動質心,是通過改變樣本和聚類中心點的距離來最小代價函數。
在K均值演算法中,代價函數是一直下降的,不可能出現上升的情況。

聚類中心的個數 一般都是小於樣本數量 的,因此可以隨機取 個樣本來作為聚類中心。

步驟

這樣做的優點是方便快捷,缺點是不一定能夠找到最佳的聚類中心,容易陷入局部最優。鉛梁
這種陷入局部最優的情況在聚態行類中心過少時一般會出現,一般在 的情況下,解決辦法是多次執行該步驟,比較代價函數的值,取最小值。

聚類中心數量的選擇沒有固定的方法,跟主觀上的判斷有很大關系,也跟業務,以及一些客觀條件,以及使用K均值演算法的目標有關。

B. 典型的聚類演算法有哪些,並簡述K-means演算法的原理及不足

典型的聚類演算法有:

C. K-Means 聚類演算法

問題導入

    假如有這樣一種情況,在一天你想去某個城市旅遊,這個城市裡你想去的有70個地方,現在你只有每一個地方的地址,這個地址列表很長,有70個位置。事先肯定要做好攻略,你要把一些比較接近的地方放在一起組成一組,這樣就可以安排交通工具抵達這些組的「某個地址」,然後步行到每個組內的地址。那麼,如何確定這些組,如何確定這些組的「某個地址」?答案就是聚類。而本文所提供的k-means聚類分析方法就可以用於解決這類問題。

一,聚類思想

        所謂聚類演算法是指將一堆沒有標簽的數據自動劃分成幾類的方法,屬於無監督學習方法,這個方法要保證同一類的數據有相似的特徵,如下圖:

        根據樣本之間的距離或者說相似性,把越相似,差異越小的樣本聚成一類(簇),最後形成多個簇,使同一個簇內部的樣本相似度高,不同簇之間差異性高。

二,K-Means聚類分析演算法

        K-Means是一種基於自下而上的聚類分析方法,基本概念就是空間中有N個點,初始選擇K個點作為中心聚類點,將N個點分別與K個點計算距離,選擇自己最近的點作為自己的中心點,不斷地更新中心聚集點。

相關概念:

        K值:要得到的簇的個數

        質心:每個簇的均值向量,即向量各維取品軍即可

        距離度量:常用歐幾里得距離和餘弦相似度(先標准化)

        兩點之間的距離:

演算法流程:

        1    首先確定一個K值,即我們希望將數據集經過聚類得到 K個集合;

        2    從數據集中隨機選擇K個數據點作為質心;

        3    對數據集中每一個點,計算其與每個質心的距離(如歐式距離),離哪個質心近,就劃分到哪個質心所屬的集合

        4    把所有數據歸好集合,一共有K個集合,然後重新計算每個集合的質心;

        5    如果新計算出來的質心和原來的質心之間的距離小於某一個設置的閾值(表示重新計算的質心的位置變化不大,趨於穩定,或者說收斂),我們可以認為聚類已經達到期望的結果,演算法終止。

        6    如果新質心和原質心距離變化大,需要迭代3-5步驟

K-means實現過程

K-means 聚類演算法是一種非監督學習演算法,被用於非標簽數據(data without defined categories or groups)。該演算法使用迭代細化來產生最終結果。演算法輸入的是集群的數量 K 和數據集。數據集是每個數據點的一組功能。

演算法從 Κ 質心的初始估計開始,其可以隨機生成或從數據集中隨機選擇 。然後演算法在下面兩個步驟之間迭代:

1.數據分配:

每個質心定義一個集群。在此步驟中,基於平方歐氏距離將每個數據點分配到其最近的質心。更正式一點, ci 屬於質心集合 C ,然後每個數據點 x 基於下面的公式被分配到一個集群中。

其中 dist(·)是標准(L2)歐氏距離。讓指向第 i 個集群質心的數據點集合定為 Si 。

2. 質心更新:

在此步驟中,重新計算質心。這是通過獲取分配給該質心集群的所有數據點的平均值來完成的。公式如下:

K-means 演算法在步驟 1 和步驟 2 之間迭代,直到滿足停止條件(即,沒有數據點改變集群,距離的總和最小化,或者達到一些最大迭代次數)。

K 值的選擇

上述演算法找到特定預選 K 值和數據集標簽。為了找到數據中的集群數,用戶需要針對一系列 K 值運行 K-means 聚類演算法並比較結果。通常,沒有用於確定 K 的精確值的方法,但是可以使用以下技術獲得准確的估計。

Elbow point 拐點方法

通常用於比較不同 K 值的結果的度量之一是數據點與其聚類質心之間的平均距離。由於增加集群的數量將總是減少到數據點的距離,因此當 K 與數據點的數量相同時,增加 K 將總是減小該度量,達到零的極值。因此,該指標不能用作唯一目標。相反,繪制了作為 K 到質心的平均距離的函數,並且可以使用減小率急劇變化的「拐點」來粗略地確定 K 。

DBI(Davies-Bouldin Index)

DBI 是一種評估度量的聚類演算法的指標,通常用於評估 K-means 演算法中 k 的取值。簡單的理解就是:DBI 是聚類內的距離與聚類外的距離的比值。所以,DBI 的數值越小,表示分散程度越低,聚類效果越好。

還存在許多用於驗證 K 的其他技術,包括交叉驗證,信息標准,信息理論跳躍方法,輪廓方法和 G 均值演算法等等。

三,數學原理

K-Means採用的啟發式很簡單,可以用下面一組圖來形象的描述:

上述a表達了初始的數據集,假設 k=2 。在圖b中,我們隨機選擇了兩個 k 類所對應的類別質點,即圖中的紅色質點和藍色質點,然後分別求樣本中所有點到這兩個質心的距離,並標記每個樣本類別為和該樣本距離最小的質心的類別,如圖c所示,經過計算樣本和紅色質心和藍色質心的距離,我們得到了所有樣本點的第一輪迭代後的類別。此時我們對我們當前標記為紅色和藍色的點分別求其新的質心,如圖d所示,新的紅色質心和藍色質心大熱位置已經發生了變化。圖e和圖f重復了我們在圖c和圖d的過程,即將所有點的類別標記為距離最近的質心的類別並求出新的質心。最終我們得到的兩個類別如圖f.

四,實例

坐標系中有六個點:

1、我們分兩組,令K等於2,我們隨機選擇兩個點:P1和P2

2、通過勾股定理計算剩餘點分別到這兩個點的距離:

3、第一次分組後結果:

        組A:P1

        組B:P2、P3、P4、P5、P6

4、分別計算A組和B組的質心:

        A組質心還是P1=(0,0)

        B組新的質心坐標為:P哥=((1+3+8+9+10)/5,(2+1+8+10+7)/5)=(6.2,5.6)

5、再次計算每個點到質心的距離:

6、第二次分組結果:

        組A:P1、P2、P3

        組B:P4、P5、P6

7、再次計算質心:

        P哥1=(1.33,1) 

        P哥2=(9,8.33)

8、再次計算每個點到質心的距離:

9、第三次分組結果:

        組A:P1、P2、P3

        組B:P4、P5、P6

可以發現,第三次分組結果和第二次分組結果一致,說明已經收斂,聚類結束。

五、K-Means的優缺點

優點:

1、原理比較簡單,實現也是很容易,收斂速度快。

2、當結果簇是密集的,而簇與簇之間區別明顯時, 它的效果較好。

3、主要需要調參的參數僅僅是簇數k。

缺點:

1、K值需要預先給定,很多情況下K值的估計是非常困難的。

2、K-Means演算法對初始選取的質心點是敏感的,不同的隨機種子點得到的聚類結果完全不同 ,對結果影響很大。

3、對噪音和異常點比較的敏感。用來檢測異常值。

4、採用迭代方法, 可能只能得到局部的最優解,而無法得到全局的最優解 。

六、細節問題

1、K值怎麼定?

答:分幾類主要取決於個人的經驗與感覺,通常的做法是多嘗試幾個K值,看分成幾類的結果更好解釋,更符合分析目的等。或者可以把各種K值算出的 E 做比較,取最小的 E 的K值。

2、初始的K個質心怎麼選?

        答:最常用的方法是隨機選,初始質心的選取對最終聚類結果有影響,因此演算法一定要多執行幾次,哪個結果更reasonable,就用哪個結果。      當然也有一些優化的方法,第一種是選擇彼此距離最遠的點,具體來說就是先選第一個點,然後選離第一個點最遠的當第二個點,然後選第三個點,第三個點到第一、第二兩點的距離之和最小,以此類推。第二種是先根據其他聚類演算法(如層次聚類)得到聚類結果,從結果中每個分類選一個點。

3、關於離群值?

        答:離群值就是遠離整體的,非常異常、非常特殊的數據點,在聚類之前應該將這些「極大」「極小」之類的離群數據都去掉,否則會對於聚類的結果有影響。但是,離群值往往自身就很有分析的價值,可以把離群值單獨作為一類來分析。

4、單位要一致!

        答:比如X的單位是米,Y也是米,那麼距離算出來的單位還是米,是有意義的。但是如果X是米,Y是噸,用距離公式計算就會出現「米的平方」加上「噸的平方」再開平方,最後算出的東西沒有數學意義,這就有問題了。

5、標准化

        答:如果數據中X整體都比較小,比如都是1到10之間的數,Y很大,比如都是1000以上的數,那麼,在計算距離的時候Y起到的作用就比X大很多,X對於距離的影響幾乎可以忽略,這也有問題。因此,如果K-Means聚類中選擇歐幾里德距離計算距離,數據集又出現了上面所述的情況,就一定要進行數據的標准化(normalization),即將數據按比例縮放,使之落入一個小的特定區間。

D. Kmeans聚類演算法簡介

由於具有出色的速度和良好的可擴展性,Kmeans聚類演算法算得上是最著名的聚類方法。Kmeans演算法是一個重復移動類中心點的過程,把類的中心點,也稱重心(centroids),移動到其包含成員的平均位置,然後重新劃分其內部成員。k是演算法計算出的超參數,表示類的數量;Kmeans可以自動分配樣本到不同的類,但是不能決定究竟要分幾個類。k必須是一個比訓練集樣本數小的正整數。有時,類的數量是由問題內容指定的。例如,一個鞋廠有三種新款式,它想知道每種新款式都有哪些潛在客戶,於是它調研客戶,然後從數據里找出三類。也有一些問題沒有指定聚類的數量,最優的聚類數量是不確定的。後面我將會詳細介紹一些方法來估計最優聚類數量。

Kmeans的參數是類的重心位置和其內部觀測值的位置。與廣義線性模型和決策樹類似,Kmeans參數的最優解也是以成本函數最小化為目標。Kmeans成本函數公式如下:

μiμi是第kk個類的重心位置。成本函數是各個類畸變程度(distortions)之和。每個類的畸變程度等於該類重心與其內部成員位置距離的平方和。若類內部的成員彼此間越緊湊則類的畸變程度越小,反之,若類內部的成員彼此間越分散則類的畸變程度越大。求解成本函數最小化的參數就是一個重復配置每個類包含的觀測值,並不斷移動類重心的過程。首先,類的重心是隨機確定的位置。實際上,重心位置等於隨機選擇的觀測值的位置。每次迭代的時候,Kmeans會把觀測值分配到離它們最近的類,然後把重心移動到該類全部成員位置的平均值那裡。

2.1 根據問題內容確定

這種方法就不多講了,文章開篇就舉了一個例子。

2.2 肘部法則

如果問題中沒有指定kk的值,可以通過肘部法則這一技術來估計聚類數量。肘部法則會把不同kk值的成本函數值畫出來。隨著kk值的增大,平均畸變程度會減小;每個類包含的樣本數會減少,於是樣本離其重心會更近。但是,隨著kk值繼續增大,平均畸變程度的改善效果會不斷減低。kk值增大過程中,畸變程度的改善效果下降幅度最大的位置對應的kk值就是肘部。為了讓讀者看的更加明白,下面讓我們通過一張圖用肘部法則來確定最佳的kk值。下圖數據明顯可分成兩類:

從圖中可以看出,k值從1到2時,平均畸變程度變化最大。超過2以後,平均畸變程度變化顯著降低。因此最佳的k是2。

2.3 與層次聚類結合

經常會產生較好的聚類結果的一個有趣策略是,首先採用層次凝聚演算法決定結果粗的數目,並找到一個初始聚類,然後用迭代重定位來改進該聚類。

2.4 穩定性方法

穩定性方法對一個數據集進行2次重采樣產生2個數據子集,再用相同的聚類演算法對2個數據子集進行聚類,產生2個具有kk個聚類的聚類結果,計算2個聚類結果的相似度的分布情況。2個聚類結果具有高的相似度說明kk個聚類反映了穩定的聚類結構,其相似度可以用來估計聚類個數。採用次方法試探多個kk,找到合適的k值。

2.5 系統演化方法

系統演化方法將一個數據集視為偽熱力學系統,當數據集被劃分為kk個聚類時稱系統處於狀態kk。系統由初始狀態k=1k=1出發,經過分裂過程和合並過程,系統將演化到它的穩定平衡狀態 kiki ,其所對應的聚類結構決定了最優類數 kiki 。系統演化方法能提供關於所有聚類之間的相對邊界距離或可分程度,它適用於明顯分離的聚類結構和輕微重疊的聚類結構。

2.6 使用canopy演算法進行初始劃分

基於Canopy Method的聚類演算法將聚類過程分為兩個階段

(1) 聚類最耗費計算的地方是計算對象相似性的時候,Canopy Method在第一階段選擇簡單、計算代價較低的方法計算對象相似性,將相似的對象放在一個子集中,這個子集被叫做Canopy,通過一系列計算得到若干Canopy,Canopy之間可以是重疊的,但不會存在某個對象不屬於任何Canopy的情況,可以把這一階段看做數據預處理;

(2) 在各個Canopy內使用傳統的聚類方法(如Kmeans),不屬於同一Canopy的對象之間不進行相似性計算。

從這個方法起碼可以看出兩點好處:首先,Canopy不要太大且Canopy之間重疊的不要太多的話會大大減少後續需要計算相似性的對象的個數;其次,類似於Kmeans這樣的聚類方法是需要人為指出K的值的,通過(1)得到的Canopy個數完全可以作為這個k值,一定程度上減少了選擇k的盲目性。

其他方法如貝葉斯信息准則方法(BIC)可參看文獻[4]。

選擇適當的初始質心是基本kmeans演算法的關鍵步驟。常見的方法是隨機的選取初始中心,但是這樣簇的質量常常很差。處理選取初始質心問題的一種常用技術是:多次運行,每次使用一組不同的隨機初始質心,然後選取具有最小SSE(誤差的平方和)的簇集。這種策略簡單,但是效果可能不好,這取決於數據集和尋找的簇的個數。

第二種有效的方法是,取一個樣本,並使用層次聚類技術對它聚類。從層次聚類中提取kk個簇,並用這些簇的質心作為初始質心。該方法通常很有效,但僅對下列情況有效:(1)樣本相對較小,例如數百到數千(層次聚類開銷較大);(2) kk相對於樣本大小較小。

第三種選擇初始質心的方法,隨機地選擇第一個點,或取所有點的質心作為第一個點。然後,對於每個後繼初始質心,選擇離已經選取過的初始質心最遠的點。使用這種方法,確保了選擇的初始質心不僅是隨機的,而且是散開的。但是,這種方法可能選中離群點。此外,求離當前初始質心集最遠的點開銷也非常大。為了克服這個問題,通常該方法用於點樣本。由於離群點很少(多了就不是離群點了),它們多半不會在隨機樣本中出現。計算量也大幅減少。

第四種方法就是上面提到的canopy演算法。

常用的距離度量方法包括:歐幾里得距離和餘弦相似度。兩者都是評定個體間差異的大小的。

歐氏距離是最常見的距離度量,而餘弦相似度則是最常見的相似度度量,很多的距離度量和相似度度量都是基於這兩者的變形和衍生,所以下面重點比較下兩者在衡量個體差異時實現方式和應用環境上的區別。

藉助三維坐標系來看下歐氏距離和餘弦相似度的區別:

從圖上可以看出距離度量衡量的是空間各點間的絕對距離,跟各個點所在的位置坐標(即個體特徵維度的數值)直接相關;而餘弦相似度衡量的是空間向量的夾角,更加的是體現在方向上的差異,而不是位置。如果保持A點的位置不變,B點朝原方向遠離坐標軸原點,那麼這個時候餘弦相似cosθ是保持不變的,因為夾角不變,而A、B兩點的距離顯然在發生改變,這就是歐氏距離和餘弦相似度的不同之處。

根據歐氏距離和餘弦相似度各自的計算方式和衡量特徵,分別適用於不同的數據分析模型:歐氏距離能夠體現個體數值特徵的絕對差異,所以更多的用於需要從維度的數值大小中體現差異的分析,如使用用戶行為指標分析用戶價值的相似度或差異;而餘弦相似度更多的是從方向上區分差異,而對絕對的數值不敏感,更多的用於使用用戶對內容評分來區分用戶興趣的相似度和差異,同時修正了用戶間可能存在的度量標准不統一的問題(因為餘弦相似度對絕對數值不敏感)。

因為歐幾里得距離度量會受指標不同單位刻度的影響,所以一般需要先進行標准化,同時距離越大,個體間差異越大;空間向量餘弦夾角的相似度度量不會受指標刻度的影響,餘弦值落於區間[-1,1],值越大,差異越小。但是針對具體應用,什麼情況下使用歐氏距離,什麼情況下使用餘弦相似度?

從幾何意義上來說,n維向量空間的一條線段作為底邊和原點組成的三角形,其頂角大小是不確定的。也就是說對於兩條空間向量,即使兩點距離一定,他們的夾角餘弦值也可以隨意變化。感性的認識,當兩用戶評分趨勢一致時,但是評分值差距很大,餘弦相似度傾向給出更優解。舉個極端的例子,兩用戶只對兩件商品評分,向量分別為(3,3)和(5,5),這兩位用戶的認知其實是一樣的,但是歐式距離給出的解顯然沒有餘弦值合理。

我們把機器學習定義為對系統的設計和學習,通過對經驗數據的學習,將任務效果的不斷改善作為一個度量標准。Kmeans是一種非監督學習,沒有標簽和其他信息來比較聚類結果。但是,我們還是有一些指標可以評估演算法的性能。我們已經介紹過類的畸變程度的度量方法。本節為將介紹另一種聚類演算法效果評估方法稱為輪廓系數(Silhouette Coefficient)。輪廓系數是類的密集與分散程度的評價指標。它會隨著類的規模增大而增大。彼此相距很遠,本身很密集的類,其輪廓系數較大,彼此集中,本身很大的類,其輪廓系數較小。輪廓系數是通過所有樣本計算出來的,計算每個樣本分數的均值,計算公式如下:

aa是每一個類中樣本彼此距離的均值,bb是一個類中樣本與其最近的那個類的所有樣本的距離的均值。

輸入:聚類個數k,數據集XmxnXmxn。

輸出:滿足方差最小標準的k個聚類。

(1) 選擇k個初始中心點,例如c[0]=X[0] , … , c[k-1]=X[k-1];

(2) 對於X[0]….X[n],分別與c[0]…c[k-1]比較,假定與c[i]差值最少,就標記為i;

(3) 對於所有標記為i點,重新計算c[i]={ 所有標記為i的樣本的每個特徵的均值};

(4) 重復(2)(3),直到所有c[i]值的變化小於給定閾值或者達到最大迭代次數。

Kmeans的時間復雜度:O(tkmn),空間復雜度:O((m+k)n)。其中,t為迭代次數,k為簇的數目,m為樣本數,n為特徵數。

7.1 優點

(1). 演算法原理簡單。需要調節的超參數就是一個k。

(2). 由具有出色的速度和良好的可擴展性。

7.2 缺點

(1). 在 Kmeans 演算法中 kk 需要事先確定,這個 kk 值的選定有時候是比較難確定。

(2). 在 Kmeans 演算法中,首先需要初始k個聚類中心,然後以此來確定一個初始劃分,然後對初始劃分進行優化。這個初始聚類中心的選擇對聚類結果有較大的影響,一旦初始值選擇的不好,可能無法得到有效的聚類結果。多設置一些不同的初值,對比最後的運算結果,一直到結果趨於穩定結束。

(3). 該演算法需要不斷地進行樣本分類調整,不斷地計算調整後的新的聚類中心,因此當數據量非常大時,演算法的時間開銷是非常大的。

(4). 對離群點很敏感。

(5). 從數據表示角度來說,在 Kmeans 中,我們用單個點來對 cluster 進行建模,這實際上是一種最簡化的數據建模形式。這種用點來對 cluster 進行建模實際上就已經假設了各 cluster的數據是呈圓形(或者高維球形)或者方形等分布的。不能發現非凸形狀的簇。但在實際生活中,很少能有這種情況。所以在 GMM 中,使用了一種更加一般的數據表示,也就是高斯分布。

(6). 從數據先驗的角度來說,在 Kmeans 中,我們假設各個 cluster 的先驗概率是一樣的,但是各個 cluster 的數據量可能是不均勻的。舉個例子,cluster A 中包含了10000個樣本,cluster B 中只包含了100個。那麼對於一個新的樣本,在不考慮其與A cluster、 B cluster 相似度的情況,其屬於 cluster A 的概率肯定是要大於 cluster B的。

(7). 在 Kmeans 中,通常採用歐氏距離來衡量樣本與各個 cluster 的相似度。這種距離實際上假設了數據的各個維度對於相似度的衡量作用是一樣的。但在 GMM 中,相似度的衡量使用的是後驗概率 αcG(x|μc,∑c)αcG(x|μc,∑c) ,通過引入協方差矩陣,我們就可以對各維度數據的不同重要性進行建模。

(8). 在 Kmeans 中,各個樣本點只屬於與其相似度最高的那個 cluster ,這實際上是一種 hard clustering 。

針對Kmeans演算法的缺點,很多前輩提出了一些改進的演算法。例如 K-modes 演算法,實現對離散數據的快速聚類,保留了Kmeans演算法的效率同時將Kmeans的應用范圍擴大到離散數據。還有K-Prototype演算法,可以對離散與數值屬性兩種混合的數據進行聚類,在K-prototype中定義了一個對數值與離散屬性都計算的相異性度量標准。當然還有其它的一些演算法,這里我 就不一一列舉了。

Kmeans 與 GMM 更像是一種 top-down 的思想,它們首先要解決的問題是,確定 cluster 數量,也就是 k 的取值。在確定了 k 後,再來進行數據的聚類。而 hierarchical clustering 則是一種 bottom-up 的形式,先有數據,然後通過不斷選取最相似的數據進行聚類。

E. 機器學習有哪些演算法

1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。

想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。

F. 機器學習一般常用的演算法有哪些

機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。

一、線性回歸

一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。

二、Logistic 回歸

它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。

三、線性判別分析(LDA)

在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。

四、決策樹

決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。

五、樸素貝葉斯

其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。

六、K近鄰演算法

K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。

七、Boosting 和 AdaBoost

首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。

八、學習向量量化演算法(簡稱 LVQ)

學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求

G. 聚類演算法 - kmeans

kmeans即k均值演算法。k均值聚類是最著名的劃分聚類演算法,由於簡潔和效率使得他成為所有聚類演算法中最廣泛使用的。給定一個數據點集合和需要的聚類數目k,k由用戶指定,k均值演算法根據某個距離函數反復把數據分入k個聚類中。

簡易動畫過程在這, 傳送門
第一步 ,輸入k的值,即我們希望將數據集經過聚類得到k類,分為k組
第二步 ,從數據集中隨機選擇k個數據點作為初識的聚類中心(質心,Centroid)
第三步 ,對集合中每一個數據點,計算與每一個聚類中心的距離,離哪個中心距離近,就標記為哪個中心。待分配完全時,就有第一次分類。
第四步 ,每一個分類根據現有的數據重新計算,並重新選取每個分類的中心(質心)
第五至N步 ,重復第三至四步,直至符合條件結束迭代步驟。條件是如果新中心和舊中心之間的距離小於某一個設置的閾值(表示重新計算的質心的位置變化不大,趨於穩定,或者說收斂),可以認為我們進行的聚類已經達到期望的結果,終止迭代過程。

該演算法的核心就是選擇合適的k值,不同的k值出來有不同的結果。

手肘法的核心指標是SSE(sum of the squared errors,誤差平方和),

其中,Ci是第i個簇,p是Ci中的樣本點,mi是Ci的質心(Ci中所有樣本的均值),SSE是所有樣本的聚類誤差,代表了聚類效果的好壞。

手肘法的核心思想是:隨著聚類數k的增大,樣本劃分會更加精細,每個簇的聚合程度會逐漸提高,那麼誤差平方和SSE自然會逐漸變小。並且,當k小於真實聚類數時,由於k的增大會大幅增加每個簇的聚合程度,故SSE的下降幅度會很大,而當k到達真實聚類數時,再增加k所得到的聚合程度回報會迅速變小,所以SSE的下降幅度會驟減,然後隨著k值的繼續增大而趨於平緩,也就是說SSE和k的關系圖是一個手肘的形狀,而這個肘部對應的k值就是數據的真實聚類數。當然,這也是該方法被稱為手肘法的原因。

該方法的核心指標是輪廓系數(Silhouette Coefficient),某個樣本點Xi的輪廓系數定義如下:

其中,a是Xi與同簇的其他樣本的平均距離,稱為凝聚度,b是Xi與最近簇中所有樣本的平均距離,稱為分離度。而最近簇的定義是

其中p是某個簇Ck中的樣本。事實上,簡單點講,就是用Xi到某個簇所有樣本平均距離作為衡量該點到該簇的距離後,選擇離Xi最近的一個簇作為最近簇。

求出所有樣本的輪廓系數後再求平均值就得到了 平均輪廓系數 。平均輪廓系數的取值范圍為[-1,1],且簇內樣本的距離越近,簇間樣本距離越遠,平均輪廓系數越大,聚類效果越好。那麼,很自然地,平均輪廓系數最大的k便是最佳聚類數。

(1)容易理解,聚類效果不錯,雖然是局部最優, 但往往局部最優就夠了
(2)處理大數據集的時候,該演算法可以保證較好的伸縮性
(3)當簇近似高斯分布的時候,效果非常不錯
(4)演算法復雜度低

(1)K 值需要人為設定,不同 K 值得到的結果不一樣
(2)對初始的簇中心敏感,不同選取方式會得到不同結果
(3)對異常值敏感
(4)樣本只能歸為一類,不適合多分類任務
(5)不適合太離散的分類、樣本類別不平衡的分類、非凸形狀的分類

閱讀全文

與kmeans演算法學習向量量化相關的資料

熱點內容
python私有庫 瀏覽:512
Python有中文嗎 瀏覽:736
麥塊的伺服器為什麼都進不去 瀏覽:474
新買的伺服器如何打開 瀏覽:35
安卓軟體游戲怎麼開發 瀏覽:319
用撲克擺愛心解壓神器怎麼擺 瀏覽:70
松下製冷壓縮機 瀏覽:275
pdf里怎麼修改文字 瀏覽:686
已保存文檔加密如何設置 瀏覽:413
怎樣判斷加密貨幣是牛是熊 瀏覽:948
初二多項式乘法速演算法 瀏覽:455
android多個布局文件 瀏覽:629
奔跑程序員 瀏覽:468
伺服器如何搭建類似github 瀏覽:292
明日之後安卓太卡怎麼辦 瀏覽:503
如何使用命令方塊找到村莊 瀏覽:767
泛函壓縮映像原理 瀏覽:522
win10清除文件夾瀏覽記錄 瀏覽:966
如何查看伺服器域中所有服務 瀏覽:384
學mastercam91編程要多久 瀏覽:1000