導航:首頁 > 源碼編譯 > 機器學習十大演算法解決的實際問題

機器學習十大演算法解決的實際問題

發布時間:2023-09-25 03:45:08

A. 數據挖掘十大經典演算法及各自優勢

數據挖掘十大經典演算法及各自優勢

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨

B. 機器學習一般常用的演算法有哪些

機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。

一、線性回歸

一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。

二、Logistic 回歸

它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。

三、線性判別分析(LDA)

在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。

四、決策樹

決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。

五、樸素貝葉斯

其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。

六、K近鄰演算法

K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。

七、Boosting 和 AdaBoost

首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。

八、學習向量量化演算法(簡稱 LVQ)

學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求

C. 目前最流行的機器學習演算法是什麼

毫無疑問,機器學習在過去幾年越來越受歡迎。由於大數據是目前技術行業最熱門的趨勢,機器學習是非常強大的,可以根據大量數據進行預測或計算推理。
如果你想學習機器演算法,要從何下手呢?
監督學習
1. 決策樹:決策樹是一種決策支持工具,使用的決策及其可能產生的後果,包括隨機事件的結果,資源消耗和效用的樹狀圖或模型。
從業務決策的角度來看,決策樹是人們必須要選擇是/否的問題,以評估大多數時候作出正確決策的概率。它允許您以結構化和系統的方式來解決問題,以得出邏輯結論。
2.樸素貝葉斯分類:樸素貝葉斯分類器是一種簡單的概率分類器,基於貝葉斯定理,其特徵之間具有強大(樸素)的獨立性假設。
特徵圖像是方程 - P(A | B)是後驗概率,P(B | A)是似然度,P(A)是類先驗概率,P(B)是預測先驗概率。
一些現實世界的例子是:
判斷郵件是否為垃圾郵件
分類技術,將新聞文章氛圍政治或體育類
檢查一段表達積極情緒或消極情緒的文字
用於面部識別軟體
3.普通最小二乘回歸:如果你了解統計學,你可能已經聽說過線性回歸。最小二乘法是一種執行線性回歸的方法。
您可以將線性回歸視為擬合直線穿過點狀分布的任務。有多種可能的策略可以做到這一點,「普通最小二乘法」策略就像這樣 -你可以畫一條線,然後把每個數據點,測量點和線之間的垂直距離,添加上去;擬合線將是距離總和的盡可能小的線。
線性是指您正在使用的模型來迎合數據,而最小二乘可以最小化線性模型誤差。
4.邏輯回歸: Logistic回歸是一個強大的統計學方法,用一個或多個解釋變數建模二項式結果。它通過使用邏輯函數估計概率,來衡量分類因變數與一個或多個獨立變數之間的關系,後者是累積邏輯分布。
邏輯回歸用於生活中:
信用評級
衡量營銷活動的成功率
預測某一產品的收入
某一天會有地震嗎
5.支持向量機: SVM是二元分類演算法。給定N維空間中兩種種類型的點,SVM生成(N-1)維的超平面將這些點分成2組。
假設你有一些可以線性分離的紙張中的兩種類型的點。SVM將找到一條直線,將這些點分成兩種類型,並盡可能遠離所有這些點。
在規模上,使用SVM解決的一些特大的問題(包括適當修改的實現)是:廣告、人類基因剪接位點識別、基於圖像的性別檢測,大規模圖像分類...
6.集成方法:集成方法是構建一組分類器的學習演算法,然後通過對其預測進行加權投票來對新的數據點進行分類。原始的集成方法是貝葉斯平均法,但更新的演算法包括糾錯輸出編碼、bagging和boosting。
那麼集成方法如何工作,為什麼它們優於單個模型?
均衡偏差:如果你均衡了大量的傾向民主黨的投票和大量傾向共和黨的投票,你總會得到一個不那麼偏頗的結果。
降低方差:集合大量模型的參考結果,噪音會小於單個模型的單個結果。在金融領域,這被稱為投資分散原則(diversification)——一個混搭很多種股票的投資組合,比單獨的股票更少變故。
不太可能過度擬合:如果您有單個模型不完全擬合,您以簡單的方式(平均,加權平均,邏輯回歸)結合每個模型建模,那麼一般不會發生過擬合。
無監督學習
7. 聚類演算法:聚類是對一組對象進行分組的任務,使得同一組(集群)中的對象彼此之間比其他組中的對象更相似。
每個聚類演算法是不同的,比如:
基於Centroid的演算法
基於連接的演算法
基於密度的演算法
概率
降維
神經網路/深度學習
8. 主成分分析: PCA是使用正交變換將可能相關變數的觀察值轉換為主成分的線性不相關變數值的一組統計過程。
PCA的一些應用包括壓縮、簡化數據、便於學習、可視化。請注意,領域知識在選擇是否繼續使用PCA時非常重要。數據嘈雜的情況(PCA的所有組件都有很大差異)的情況不適用。
9.奇異值分解:在線性代數中,SVD是真正復雜矩陣的因式分解。對於給定的m * n矩陣M,存在分解,使得M =UΣV,其中U和V是酉矩陣,Σ是對角矩陣。
PCA實際上是SVD的簡單應用。在計算機視覺技術中,第一個人臉識別演算法使用PCA和SVD,以將面部表示為「特徵臉」的線性組合,進行降維,然後通過簡單的方法將面部匹配到身份;雖然這種方法更復雜,但仍然依賴於類似的技術。
10.獨立成分分析: ICA是一種統計技術,用於揭示隨機變數、測量或信號集合的隱藏因素。ICA定義了觀察到的多變數數據的生成模型,通常將其作為大型樣本資料庫。
在模型中,假設數據變數是一些未知潛在變數的線性混合,混合系統也是未知的。潛變數被假定為非高斯和相互獨立的,它們被稱為觀測數據的獨立成分。
ICA與PCA相關,但它是一種更強大的技術,能夠在這些經典方法完全失敗時找到潛在的源因素。其應用包括數字圖像、文檔資料庫、經濟指標和心理測量。

D. 機器學習新手必看十大演算法

機器學習新手必看十大演算法
本文介紹了機器學習新手需要了解的 10 大演算法,包括線性回歸、Logistic 回歸、樸素貝葉斯、K 近鄰演算法等。
在機器學習中,有一種叫做「沒有免費的午餐」的定理。簡而言之,它指出沒有任何一種演算法對所有問題都有效,在監督學習(即預測建模)中尤其如此。
例如,你不能說神經網路總是比決策樹好,反之亦然。有很多因素在起作用,例如數據集的大小和結構。
因此,你應該針對具體問題嘗試多種不同演算法,並留出一個數據「測試集」來評估性能、選出優勝者。
當然,你嘗試的演算法必須適合你的問題,也就是選擇正確的機器學習任務。打個比方,如果你需要打掃房子,你可能會用吸塵器、掃帚或拖把,但是你不會拿出鏟子開始挖土。
大原則
不過也有一個普遍原則,即所有監督機器學習演算法預測建模的基礎。
機器學習演算法被描述為學習一個目標函數 f,該函數將輸入變數 X 最好地映射到輸出變數 Y:Y = f(X)
這是一個普遍的學習任務,我們可以根據輸入變數 X 的新樣本對 Y 進行預測。我們不知道函數 f 的樣子或形式。如果我們知道的話,我們將會直接使用它,不需要用機器學習演算法從數據中學習。
最常見的機器學習演算法是學習映射 Y = f(X) 來預測新 X 的 Y。這叫做預測建模或預測分析,我們的目標是盡可能作出最准確的預測。
對於想了解機器學習基礎知識的新手,本文將概述數據科學家使用的 top 10 機器學習演算法。
1. 線性回歸
線性回歸可能是統計學和機器學習中最知名和最易理解的演算法之一。
預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。
線性回歸的表示是一個方程,它通過找到輸入變數的特定權重(稱為系數 B),來描述一條最適合表示輸入變數 x 與輸出變數 y 關系的直線。
線性回歸
例如:y = B0 + B1 * x
我們將根據輸入 x 預測 y,線性回歸學習演算法的目標是找到系數 B0 和 B1 的值。
可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。
線性回歸已經存在了 200 多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術,可以首先嘗試一下。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學中借鑒的另一種技術。它是解決二分類問題的首選方法。
Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。
logistic 函數看起來像一個大的 S,並且可以將任何值轉換到 0 到 1 的區間內。這非常實用,因為我們可以規定 logistic 函數的輸出值是 0 和 1(例如,輸入小於 0.5 則輸出為 1)並預測類別值。
Logistic 回歸
由於模型的學習方式,Logistic 回歸的預測也可以作為給定數據實例(屬於類別 0 或 1)的概率。這對於需要為預測提供更多依據的問題很有用。
像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似(相關)的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
3. 線性判別分析(LDA)
Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。如果你有兩個以上的類別,那麼線性判別分析是首選的線性分類技術。
LDA 的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA 包括:
每個類別的平均值;
所有類別的方差。
線性判別分析
進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布(鍾形曲線),因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
4. 分類與回歸樹
決策樹是預測建模機器學習的一種重要演算法。
決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數 x 和該變數上的一個分割點(假設變數是數字)。
決策樹
決策樹的葉節點包含一個用於預測的輸出變數 y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。
決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
5. 樸素貝葉斯
樸素貝葉斯是一個簡單但是很強大的預測建模演算法。
該模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來:1)每個類別的概率;2)給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當你的數據是實值時,通常假設一個高斯分布(鍾形曲線),這樣你可以簡單的估計這些概率。
貝葉斯定理
樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。
6. K 近鄰演算法
KNN 演算法非常簡單且有效。KNN 的模型表示是整個訓練數據集。是不是很簡單?
KNN 演算法在整個訓練集中搜索 K 個最相似實例(近鄰)並匯總這 K 個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數(或最常見的)類別值。
訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同(例如都是用英寸表示),那麼最簡單的技術是使用歐幾里得距離,你可以根據每個輸入變數之間的差值直接計算出來其數值。
K 近鄰演算法
KNN 需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算(或學習)。你還可以隨時更新和管理訓練實例,以保持預測的准確性。
距離或緊密性的概念可能在非常高的維度(很多輸入變數)中會瓦解,這對演算法在你的問題上的性能產生負面影響。這被稱為維數災難。因此你最好只使用那些與預測輸出變數最相關的輸入變數。
7. 學習向量量化
K 近鄰演算法的一個缺點是你需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。
學習向量量化
LVQ 的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測(類似 K 近鄰演算法)。最相似的近鄰(最佳匹配的碼本向量)通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或(回歸中的實際值)作為預測。如果你重新調整數據,使其具有相同的范圍(比如 0 到 1 之間),就可以獲得最佳結果。
如果你發現 KNN 在你的數據集上達到很好的結果,請嘗試用 LVQ 減少存儲整個訓練數據集的內存要求。
8. 支持向量機(SVM)
支持向量機可能是最受歡迎和最廣泛討論的機器學習演算法之一。
超平面是分割輸入變數空間的一條線。在 SVM 中,選擇一條可以最好地根據輸入變數類別(類別 0 或類別 1)對輸入變數空間進行分割的超平面。在二維中,你可以將其視為一條線,我們假設所有的輸入點都可以被這條線完全的分開。SVM 學習演算法找到了可以讓超平面對類別進行最佳分割的系數。
支持向量機
超平面和最近的數據點之間的距離被稱為間隔。分開兩個類別的最好的或最理想的超平面具備最大間隔。只有這些點與定義超平面和構建分類器有關。這些點被稱為支持向量,它們支持或定義了超平面。實際上,優化演算法用於尋找最大化間隔的系數的值。
SVM 可能是最強大的立即可用的分類器之一,值得一試。
9. Bagging 和隨機森林
隨機森林是最流行和最強大的機器學習演算法之一。它是 Bootstrap Aggregation(又稱 bagging)集成機器學習演算法的一種。
bootstrap 是從數據樣本中估算數量的一種強大的統計方法。例如平均數。你從數據中抽取大量樣本,計算平均值,然後平均所有的平均值以便更好的估計真實的平均值。
bagging 使用相同的方法,但是它估計整個統計模型,最常見的是決策樹。在訓練數據中抽取多個樣本,然後對每個數據樣本建模。當你需要對新數據進行預測時,每個模型都進行預測,並將所有的預測值平均以便更好的估計真實的輸出值。
隨機森林
隨機森林是對這種方法的一種調整,在隨機森林的方法中決策樹被創建以便於通過引入隨機性來進行次優分割,而不是選擇最佳分割點。
因此,針對每個數據樣本創建的模型將會與其他方式得到的有所不同,不過雖然方法獨特且不同,它們仍然是准確的。結合它們的預測可以更好的估計真實的輸出值。
如果你用方差較高的演算法(如決策樹)得到了很好的結果,那麼通常可以通過 bagging 該演算法來獲得更好的結果。
10. Boosting 和 AdaBoost
Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。
AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。
AdaBoost
AdaBoost與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。
因為在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據非常重要。
總結
初學者在面對各種機器學習演算法時經常問:「我應該用哪個演算法?」這個問題的答案取決於很多因素,包括:(1)數據的大小、質量和特性;(2)可用的計算時間;(3)任務的緊迫性;(4)你想用這些數據做什麼。
即使是經驗豐富的數據科學家在嘗試不同的演算法之前,也無法分辨哪種演算法會表現最好。雖然還有很多其他的機器學習演算法,但本篇文章中討論的是最受歡迎的演算法。如果你是機器學習的新手,這將是一個很好的學習起點。

閱讀全文

與機器學習十大演算法解決的實際問題相關的資料

熱點內容
linuxyum安裝ftp 瀏覽:688
村委會主任可以推行政命令嗎 瀏覽:102
電腦文件夾封面多張圖片 瀏覽:263
網吧總伺服器叫什麼 瀏覽:920
多個演算法解決同一個問題 瀏覽:453
小車解壓後我的購車發票呢 瀏覽:977
做app開發用什麼雲伺服器 瀏覽:177
linux網卡子介面 瀏覽:983
21歲職高畢業學程序員怎麼學 瀏覽:321
vs如何對單個文件編譯 瀏覽:4
為什麼有的電腦不能安裝python 瀏覽:75
金蝶迷你版加密狗檢測到過期 瀏覽:184
硬體描述語言編譯結果 瀏覽:655
程序員逆天改命 瀏覽:19
金斗雲伺服器 瀏覽:445
港口工程pdf 瀏覽:770
程序設計語言pdf 瀏覽:432
蔬菜價格上漲演算法 瀏覽:221
nfs是什麼伺服器 瀏覽:823
單榀框架柱子要加密嗎 瀏覽:350