❶ 關於排序演算法的穩定性
假定在待排序的記錄序列中,存在多個具有相同的關鍵字的記錄,若經過排序,這些記錄的相對次序保持不變,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序後的序列中,r[i]仍在r[j]之前,則稱這種排序演算法是穩定的;否則稱為不穩定的。
即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。需要注意的是,排序演算法是否為穩定的是由具體演算法決定的,不穩定的演算法在某種條件下可以變為穩定的演算法,而穩定的演算法在某種條件下也可以變為不穩定的演算法。
(1)排序演算法應注意擴展閱讀:
基數排序按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的。
先按低優先順序排序,再按高優 先級排序,最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。基數排序基於分別排序,分別收集,所以其是穩定的排序演算法。
❷ 各種排序演算法有什麼缺陷
1、 堆排序定義
n個關鍵字序列Kl,K2,…,Kn稱為堆,當且僅當該序列滿足如下性質(簡稱為堆性質):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若將此序列所存儲的向量R[1..n]看做是一棵完全二叉樹的存儲結構,則堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉結點的關鍵字均不大於(或不小於)其左右孩子(若存在)結點的關鍵字。
【例】關鍵字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分別滿足堆性質(1)和(2),故它們均是堆,其對應的完全二叉樹分別如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最小者的堆稱為小根堆。
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最大者,稱為大根堆。
注意:
①堆中任一子樹亦是堆。
②以上討論的堆實際上是二叉堆(Binary Heap),類似地可定義k叉堆。
3、堆排序特點
堆排序(HeapSort)是一樹形選擇排序。
堆排序的特點是:在排序過程中,將R[l..n]看成是一棵完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系【參見二叉樹的順序存儲結構】,在當前無序區中選擇關鍵字最大(或最小)的記錄。
4、堆排序與直接插入排序的區別
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
5、堆排序
堆排序利用了大根堆(或小根堆)堆頂記錄的關鍵字最大(或最小)這一特徵,使得在當前無序區中選取最大(或最小)關鍵字的記錄變得簡單。
(1)用大根堆排序的基本思想
① 先將初始文件R[1..n]建成一個大根堆,此堆為初始的無序區
② 再將關鍵字最大的記錄R[1](即堆頂)和無序區的最後一個記錄R[n]交換,由此得到新的無序區R[1..n-1]和有序區R[n],且滿足R[1..n-1].keys≤R[n].key
③ 由於交換後新的根R[1]可能違反堆性質,故應將當前無序區R[1..n-1]調整為堆。然後再次將R[1..n-1]中關鍵字最大的記錄R[1]和該區間的最後一個記錄R[n-1]交換,由此得到新的無序區R[1..n-2]和有序區R[n-1..n],且仍滿足關系R[1..n-2].keys≤R[n-1..n].keys,同樣要將R[1..n-2]調整為堆。
……
直到無序區只有一個元素為止。
(2)大根堆排序演算法的基本操作:
① 初始化操作:將R[1..n]構造為初始堆;
② 每一趟排序的基本操作:將當前無序區的堆頂記錄R[1]和該區間的最後一個記錄交換,然後將新的無序區調整為堆(亦稱重建堆)。
注意:
①只需做n-1趟排序,選出較大的n-1個關鍵字即可以使得文件遞增有序。
②用小根堆排序與利用大根堆類似,只不過其排序結果是遞減有序的。堆排序和直接選擇排序相反:在任何時刻,堆排序中無序區總是在有序區之前,且有序區是在原向量的尾部由後往前逐步擴大至整個向量為止。
(3)堆排序的演算法:
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元
int i;
BuildHeap(R); //將R[1-n]建成初始堆
for(i=n;i1;i--){ //對當前無序區R[1..i]進行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //將堆頂和堆中最後一個記錄交換
Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函數的實現
因為構造初始堆必須使用到調整堆的操作,先討論Heapify的實現。
① Heapify函數思想方法
每趟排序開始前R[l..i]是以R[1]為根的堆,在R[1]與R[i]交換後,新的無序區R[1..i-1]中只有R[1]的值發生了變化,故除R[1]可能違反堆性質外,其餘任何結點為根的子樹均是堆。因此,當被調整區間是R[low..high]時,只須調整以R[low]為根的樹即可。
"篩選法"調整堆
R[low]的左、右子樹(若存在)均已是堆,這兩棵子樹的根R[2low]和R[2low+1]分別是各自子樹中關鍵字最大的結點。若R[low].key不小於這兩個孩子結點的關鍵字,則R[low]未違反堆性質,以R[low]為根的樹已是堆,無須調整;否則必須將R[low]和它的兩個孩子結點中關鍵字較大者進行交換,即R[low]與R[large](R[large].key=max(R[2low].key,R[2low+1].key))交換。交換後又可能使結點R[large]違反堆性質,同樣由於該結點的兩棵子樹(若存在)仍然是堆,故可重復上述的調整過程,對以R[large]為根的樹進行調整。此過程直至當前被調整的結點已滿足堆性質,或者該結點已是葉子為止。上述過程就象過篩子一樣,把較小的關鍵字逐層篩下去,而將較大的關鍵字逐層選上來。因此,有人將此方法稱為"篩選法"。
具體的演算法【參見教材】
②BuildHeap的實現
要將初始文件R[l..n]調整為一個大根堆,就必須將它所對應的完全二叉樹中以每一結點為根的子樹都調整為堆。
顯然只有一個結點的樹是堆,而在完全二叉樹中,所有序號 的結點都是葉子,因此以這些結點為根的子樹均已是堆。這樣,我們只需依次將以序號為 , -1,…,1的結點作為根的子樹都調整為堆即可。
具體演算法【參見教材】。
5、大根堆排序實例
對於關鍵字序列(42,13,24,91,23,16,05,88),在建堆過程中完全二叉樹及其存儲結構的變化情況參見【動畫演示】。
6、 演算法分析
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。
由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。
堆排序是就地排序,輔助空間為O(1),
它是不穩定的排序方法。
❸ 在快速排序、堆排序、歸並排序中,什麼排序是穩定的
歸並排序是穩定的排序演算法。
歸並排序的穩定性分析:
歸並排序是把序列遞歸地分成短序列,遞歸出口是短序列只有1個元素或者2個序列,然後把各個有序的段序列合並成一個有序的長序列,不斷合並直到原序列全部排好序。
可以發現,在1個或2個元素時,1個元素不會交換,2個元素如果大小相等,沒有外部干擾,將不會破壞穩定性。
那麼,在短的有序序列合並的過程中,穩定性是沒有受到破壞的,合並過程中如果兩個當前元素相等時,把處在前面的序列的元素保存在結果序列的前面,這樣就保證了穩定性。所以,歸並排序也是穩定的排序演算法。
(3)排序演算法應注意擴展閱讀:
演算法穩定性的判斷方法:
在常見的排序演算法中,堆排序、快速排序、希爾排序、直接選擇排序是不穩定的排序演算法,而基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序是穩定的排序演算法。
對於不穩定的排序演算法,只要舉出一個實例,即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。
需要注意的是,排序演算法是否為穩定的是由具體演算法決定的,不穩定的演算法在某種條件下可以變為穩定的演算法,而穩定的演算法在某種條件下也可以變為不穩定的演算法。
比如,快速排序原本是不穩定的排序方法,但若待排序記錄中只有一組具有相同關鍵碼的記錄,而選擇的軸值恰好是這組相同關鍵碼中的一個,此時的快速排序就是穩定的。
參考資料來源:網路-排序演算法穩定性
❹ 排序演算法穩定性的常見排序演算法的穩定性
堆排序、快速排序、希爾排序、直接選擇排序不是穩定的排序演算法,而基數排序、冒泡排序、直接插入排序、折半插入排序、歸並排序是穩定的排序演算法。
首先,排序演算法的穩定性大家應該都知道,通俗地講就是能保證排序前2個相等的數其在序列的前後位置順序和排序後它們兩個的前後位置順序相同。在簡單形式化一下,如果Ai = Aj, Ai原來在位置前,排序後Ai還是要在Aj位置前。
其次,說一下穩定性的好處。排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,第一個鍵排序的結果可以為第二個鍵排序所用。基數排序就 是這樣,先按低位排序,逐次按高位排序,低位相同的元素其順序再高位也相同時是不會改變的。
回到主題,現在分析一下常見的排序演算法的穩定性,每個都給出簡單的理由。
(1)冒泡排序
冒泡排序就是把小的元素往前調或者把大的元素往後調。比較是相鄰的兩個元素比較,交換也發生在這兩個元素之間。所以,如果兩個元素相等,我想你是不會再無 聊地把他們倆交換一下的;如果兩個相等的元素沒有相鄰,那麼即使通過前面的兩兩交換把兩個相鄰起來,這時候也不會交換,所以相同元素的前後順序並沒有改 變,所以冒泡排序是一種穩定排序演算法。
(2)選擇排序
選擇排序是給每個位置選擇當前元素最小的,比如給第一個位置選擇最小的,在剩餘元素裡面給第二個元素選擇第二小的,依次類推,直到第n-1個元素,第n個 元素不用選擇了,因為只剩下它一個最大的元素了。那麼,在一趟選擇,如果當前元素比一個元素小,而該小的元素又出現在一個和當前元素相等的元素後面,那麼 交換後穩定性就被破壞了。比較拗口,舉個例子,序列5 8 5 2 9, 我們知道第一遍選擇第1個元素5會和2交換,那麼原序列中2個5的相對前後順序就被破壞了,所以選擇排序不是一個穩定的排序演算法。
(3)插入排序
插入排序是在一個已經有序的小序列的基礎上,一次插入一個元素。當然,剛開始這個有序的小序列只有1個元素,就是第一個元素。比較是從有序序列的末尾開 始,也就是想要插入的元素和已經有序的最大者開始比起,如果比它大則直接插入在其後面,否則一直往前找直到找到它該插入的位置。如果碰見一個和插入元素相 等的,那麼插入元素把想插入的元素放在相等元素的後面。所以,相等元素的前後順序沒有改變,從原無序序列出去的順序就是排好序後的順序,所以插入排序是穩 定的。
(4)快速排序
快速排序有兩個方向,左邊的i下標一直往右走,當a[i] <= a[center_index],其中center_index是中樞元素的數組下標,一般取為數組第0個元素。而右邊的j下標一直往左走,當a[j] > a[center_index]。如果i和j都走不動了,i <= j, 交換a[i]和a[j],重復上面的過程,直到i>j。 交換a[j]和a[center_index],完成一趟快速排序。在中樞元素和a[j]交換的時候,很有可能把前面的元素的穩定性打亂,比如序列為 5 3 3 4 3 8 9 10 11, 現在中樞元素5和3(第5個元素,下標從1開始計)交換就會把元素3的穩定性打亂,所以快速排序是一個不穩定的排序演算法,不穩定發生在中樞元素和a[j] 交換的時刻。
(5)歸並排序
歸並排序是把序列遞歸地分成短序列,遞歸出口是短序列只有1個元素(認為直接有序)或者2個序列(1次比較和交換),然後把各個有序的段序列合並成一個有 序的長序列,不斷合並直到原序列全部排好序。可以發現,在1個或2個元素時,1個元素不會交換,2個元素如果大小相等也沒有人故意交換,這不會破壞穩定 性。那麼,在短的有序序列合並的過程中,穩定是是否受到破壞?沒有,合並過程中我們可以保證如果兩個當前元素相等時,我們把處在前面的序列的元素保存在結 果序列的前面,這樣就保證了穩定性。所以,歸並排序也是穩定的排序演算法。
(6)基數排序
基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的,先按低優先順序排序,再按高優 先級排序,最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。基數排序基於分別排序,分別收集,所以其是穩定的排序演算法。
(7)希爾排序(shell)
希爾排序是按照不同步長對元素進行插入排序,當剛開始元素很無序的時候,步長最大,所以插入排序的元素個數很少,速度很快;當元素基本有序了,步長很小, 插入排序對於有序的序列效率很高。所以,希爾排序的時間復雜度會比o(n^2)好一些。由於多次插入排序,我們知道一次插入排序是穩定的,不會改變相同元 素的相對順序,但在不同的插入排序過程中,相同的元素可能在各自的插入排序中移動,最後其穩定性就會被打亂,所以shell排序是不穩定的。
(8)堆排序
我們知道堆的結構是節點i的孩子為2*i和2*i+1節點,大頂堆要求父節點大於等於其2個子節點,小頂堆要求父節點小於等於其2個子節點。在一個長為n 的序列,堆排序的過程是從第n/2開始和其子節點共3個值選擇最大(大頂堆)或者最小(小頂堆),這3個元素之間的選擇當然不會破壞穩定性。但當為n /2-1, n/2-2, ...1這些個父節點選擇元素時,就會破壞穩定性。有可能第n/2個父節點交換把後面一個元素交換過去了,而第n/2-1個父節點把後面一個相同的元素沒 有交換,那麼這2個相同的元素之間的穩定性就被破壞了。所以,堆排序不是穩定的排序演算法。
綜上,得出結論: 選擇排序、快速排序、希爾排序、堆排序不是穩定的排序演算法,而冒泡排序、插入排序、歸並排序和基數排序是穩定的排序演算法。
❺ 常見排序演算法以及對應的時間復雜度和空間復雜度
排序 :將雜亂無章的數據,按照一定的方法進行排列的過程叫做排序。
排序大的分類可分為 內排序 和 外排序 ,不需要訪問外存就能進行排序的叫做內排序。
排序也可以分為 穩定排序 和 不穩定排序
穩定排序 :假設在待排序的文件中,存在兩個或兩個以上的記錄具有相同的關鍵字,在用某種排序法排序後,若這些相同關鍵字的元素的相對次序仍然不變,則這種排序方法是穩定的。即;若 a[i]=a[j] , a[i] 在 a[j] 之前,經過排序後 a[i] 依然在 a[j] 之前。冒泡排序、直接插入排序、二分插入排序、歸並排序,基數排序都是穩定排序。
不穩定排序 :直接選擇排序、堆排序、快速排序、希爾排序,猴子排序。
以升序為例,比較相鄰的元素,如果第一個比第二個大,則交換他們兩個。如果兩個元素一樣大,則繼續比較下一對。所以冒泡排序是一種穩定排序。
選擇一個基準元素,通常選擇第一個元素或者最後一個元素,通過一趟掃描,將待排序列分成兩部分,一部分比基準元素小,一部分大於等於基準元素,此時基準元素在其排好序後的正確位置,然後再用同樣的方法遞歸地排序劃分的兩部分。快速排序是不穩定排序。
將序列分為兩個部分{{有序序列},{無序}},每次處理就是將無序數列的第一個元素與有序數列的元素從後往前逐個進行比較,找出插入位置,將該元素插入到有序數列的合適位置中。如果碰到相等的元素,就會把它插入到想等元素後面,順序不會改變,所以直接插入排序是穩定排序。
在直接插入排序的基礎上,對有序序列進行劃分。例如:序列為 {{a[0]......a[i-1]},a[i]} 其中 {a[0]......a[i-1]} 為有序序列,取 a[(i-1)/2] ,將其與 a[i] 比較,即可確定 a[i] 的范圍 (a[0]...a[(i-1)/2] 或者 a[(i-1)/2]...a[i-1]) ,然後繼續在已確定的范圍內進行二分。范圍依次縮小為: 1/2、1/4、1/8、1/16...... 可快速確定a[i]應該插入的位置。二分插入排序也是穩定排序。
將整個序列分割成若干個小的子序列,每個子序列內分別進行插入排序。一般情況下步長取n/2。直到最後一次步長為1,即所有元素在一個組中進行排序。由於希爾排序是先將整個序列劃分為多個子序列進行排序,相同的元素順序在這個過程中順序可能會被打亂,所以希爾排序是不穩定排序。
從待排序的數據元素中,選出最小或最大的元素與序列第一個數交換。直到所有數據排完。直接選擇排序是不穩定排序。例如: {3,3,1} ,第一次排序就將1和第一個3交換,想等元素的順序改變了。
以n=10的一個數組49, 38, 65, 97, 26, 13, 27, 49, 55, 4為例
堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進。
最大堆:每個節點的值都大於等於它的孩子節點。
最小堆:每個節點的值都小於等於它的孩子節點。
最大堆第0個數據是最大數,最小堆第0個數據是最小數。
堆排序是不穩定排序
思想
歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
如何將兩個有序序列合並?(升序)
{a[0]......a[i-1]},{b[0]......b[j-1]}
若 b[0]<a[0] ,取 b[0] 放入數組 c 中,然後繼續比較數組 a 和 b 中的第一個元素,直到數組 a 和 b 中最後一對元素比較完成。
思想
將數組分成二組 a , b 如果這二組組內的數據都是有序的,那麼就可以按照上述方法對這二組數據進行排序。如果這二組數據是無序的?
可以將 a , b 組各自再分成二組。遞歸操作,直到每個小組只有一個數據,每個小組只有一個元素所以我們可以認為它已經是有序序列,然後進行合並。
先分解後合並。
歸並排序是穩定排序
將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。從最低位起從0-9依次掃描序列,一邊掃描一邊將掃描到的數據加到新的序列中,得到一個序列。然後比較高一位,重復上述操作,直到最高位排序完成。數列就變成一個有序序列。基數排序是穩定排序。
以全是二位數的序列舉例
無限猴子定理 :指一隻猴子隨機在打字機鍵盤上按鍵,最後必然可以打出法國國家圖書館的每本圖書。
時間復雜度最低1次,最高可執行到世界的盡頭。。。
❻ 數據結構的排序演算法中,哪些排序是穩定的,哪些排序是不穩定的
一、穩定排序演算法
1、冒泡排序
2、雞尾酒排序
3、插入排序
4、桶排序
5、計數排序
6、合並排序
7、基數排序
8、二叉排序樹排序
二、不穩定排序演算法
1、選擇排序
2、希爾排序
3、組合排序
4、堆排序
5、平滑排序
6、快速排序
排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
一個排序演算法是穩定的,就是當有兩個相等記錄的關鍵字R和S,且在原本的列表中R出現在S之前,在排序過的列表中R也將會是在S之前。
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地實現為穩定。
做這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個對象間之比較,就會被決定使用在原先數據次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
(6)排序演算法應注意擴展閱讀:
排序演算法的分類:
1、通過時間復雜度分類
計算的復雜度(最差、平均、和最好性能),依據列表(list)的大小(n)。
一般而言,好的性能是 O(nlogn),且壞的性能是 O(n^2)。對於一個排序理想的性能是 O(n)。
而僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要 O(nlogn)。
2、通過空間復雜度分類
存儲器使用量(空間復雜度)(以及其他電腦資源的使用)
3、通過穩定性分類
穩定的排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。
❼ 排序演算法穩定性的判斷方法
對於不穩定的排序演算法,只要舉出一個實例,即可說明它的不穩定性;而對於穩定的排序演算法,必須對演算法進行分析從而得到穩定的特性。需要注意的是,排序演算法是否為穩定的是由具體演算法決定的,不穩定的演算法在某種條件下可以變為穩定的演算法,而穩定的演算法在某種條件下也可以變為不穩定的演算法。
例如,對於如下起泡排序演算法,原本是穩定的排序演算法,如果將記錄交換的條件改成r[j]>=r[j+1],則兩個相等的記錄就會交換位置,從而變成不穩定的演算法。
void BubbleSort(int r[ ], int n){
exchange=n; //第一趟起泡排序的范圍是r[1]到r[n]
while (exchange) //僅當上一趟排序有記錄交換才進行本趟排序
{
bound=exchange; exchange=0;
for (j=1; j if (r[j]>r[j+1]) {
r[j]←→r[j+1];
exchange=j; //記錄每一次發生記錄交換的位置
}
}
}
再如,快速排序原本是不穩定的排序方法,但若待排序記錄中只有一組具有相同關鍵碼的記錄,而選擇的軸值恰好是這組相同關鍵碼中的一個,此時的快速排序就是穩定的。