導航:首頁 > 源碼編譯 > 插入排序運用了什麼演算法設計技術

插入排序運用了什麼演算法設計技術

發布時間:2023-10-02 00:45:34

1. 常見的排序演算法—選擇,冒泡,插入,快速,歸並

太久沒看代碼了,最近打算復習一下java,又突然想到了排序演算法,就把幾種常見的排序演算法用java敲了一遍,這里統一將無序的序列從小到大排列。

選擇排序是一種簡單直觀的排序演算法。它的工作原理是:第一次從待排序的數據元素中選出最小的一個元素,存放在序列的起始位置,然後再從剩餘的未排序元素中尋找到最小元素,繼續放在下一個位置,直到待排序元素個數為0。

選擇排序代碼如下:

public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i<10;i++) {

index = i;

for(int j = i + 1 ; j < 10 ; j++) {

if(arr[j] < arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("經過選擇排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

冒泡排序是一種比較基礎的排序演算法,其思想是相鄰的元素兩兩比較,較大的元素放後面,較小的元素放前面,這樣一次循環下來,最大元素就會歸位,若數組中元素個數為n,則經過(n-1)次後,所有元素就依次從小到大排好序了。整個過程如同氣泡冒起,因此被稱作冒泡排序。

選擇排序代碼如下:

public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i < 9 ; i++) {

for(int j = 0 ; j < 10 - i - 1 ;j++) {

if(arr[j] > arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("經過冒泡排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}

插入排序也是一種常見的排序演算法,插入排序的思想是:創建一個與待排序數組等大的數組,每次取出一個待排序數組中的元素,然後將其插入到新數組中合適的位置,使新數組中的元素保持從小到大的順序。

插入排序代碼如下:

public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i < length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] >= arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] < arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j < count - 1; j++) {

if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("經過插入排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i > index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}

快速排序的效率比冒泡排序演算法有大幅提升。因為使用冒泡排序時,一次外循環只能歸位一個值,有n個元素最多就要執行(n-1)次外循環。而使用快速排序時,一次可以將所有元素按大小分成兩堆,也就是平均情況下需要logn輪就可以完成排序。

快速排序的思想是:每趟排序時選出一個基準值(這里以首元素為基準值),然後將所有元素與該基準值比較,並按大小分成左右兩堆,然後遞歸執行該過程,直到所有元素都完成排序。

public void Quick_sort(int[] arr, int left, int right) {

if(left >= right)

return ;


int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i < j) {

while(arr[j] >= temp && i < j)

j--;

while(arr[i] <= temp && i < j)

i++;

if(i < j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;


Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}

歸並排序是建立在歸並操作上的一種有效的排序演算法,歸並排序對序列的元素進行逐層折半分組,然後從最小分組開始比較排序,每兩個小分組合並成一個大的分組,逐層進行,最終所有的元素都是有序的。

public void Mergesort(int[] arr,int left,int right) {

if(right - left > 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i <= right;i++) {

if(i <= (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i < L1 && j < L2) {

if(arr_1[i] <= arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j < L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i < L1;i++)

arr[k++] = arr_1[i];

}

}

歸並排序這里我使用了left,right等變數,使其可以通用,並沒有直接用數字表示那麼明確,所以給出相關偽代碼,便於理解。

Mergesort(arr[0...n-1])

//輸入:一個可排序數組arr[0...n-1]

//輸出:非降序排列的數組arr[0...n-1]

if n>1

arr[0...n/2-1] to arr_1[0...(n+1)/2-1]//確保arr_1中元素個數>=arr_2中元素個數

//對於總個數為奇數時,arr_1比arr_2中元素多一個;對於總個數為偶數時,沒有影響

arr[n/2...n-1] to arr_2[0...n/2-1]

Mergesort(arr_1[0...(n+1)/2-1])

Mergesort(arr_2[0...n/2-1])

Merge(arr_1,arr_2,arr)

Merge(arr_1[0...p-1],arr_2[0...q-1],arr[0...p+q-1])

//輸入:兩個有序數組arr_1[0...p-1]和arr_2[0...q-1]

//輸出:將arr_1與arr_2兩數組合並到arr

int i<-0;j<-0;k<-0

while i

<p span="" do<="" j

if arr_1[i] <= arr_2[j]

arr[k] <- arr_1[i]

i<-i+1

else arr[k] <- arr_2[j];j<-j+1

k<-k+1

if i=p

arr_2[j...q-1] to arr[k...p+q-1]

else arr_1[i...p-1] to arr[k...p+q-1]

package test_1;

import java.util.Scanner;

public class Test01 {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int[] arr_1 = new int[10];

for(int i = 0 ; i < 10 ; i++)

arr_1[i] = sc.nextInt();

Sort demo_1 = new Sort();


//1~5一次只能運行一個,若多個同時運行,則只有第一個有效,後面幾個是無效排序。因為第一個運行的已經將帶排序數組排好序。


demo_1.Select_sort(arr_1);//-----------------------1


//demo_1.Bubble_sort(arr_1);//---------------------2


/* //---------------------3

demo_1.Quick_sort(arr_1, 0 , arr_1.length - 1);

System.out.print("經過快速排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/


//demo_1.Insert_sort(arr_1);//--------------------4


/* //--------------------5

demo_1.Mergesort(arr_1,0,arr_1.length - 1);

System.out.print("經過歸並排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_1[i] +" ");

System.out.println("");

*/

}

}

class Sort {

public void swap(int arr[],int a, int b) {

int t;

t = arr[a];

arr[a] = arr[b];

arr[b] = t;

}


public void Select_sort(int[] arr) {

int temp,index;

for( int i=0;i<10;i++) {

index = i;

for(int j = i + 1 ; j < 10 ; j++) {

if(arr[j] < arr[index])

index = j;

}

/*

temp = arr[i];

arr[i] = arr[index];

arr[index] = temp;

*/

swap(arr,i,index);

}

System.out.print("經過選擇排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}


public void Bubble_sort(int[] arr) {

int temp;

for(int i = 0 ; i < 9 ; i++) {

for(int j = 0 ; j < 10 - i - 1 ;j++) {

if(arr[j] > arr[j+1]) {

/*

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

*/

swap(arr,j,j+1);

}

}

}

System.out.print("經過冒泡排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr[i] +" ");

System.out.println("");

}


public void Quick_sort(int[] arr, int left, int right) {

if(left >= right)

return ;


int temp,t;

int j = right;

int i = left;

temp = arr[left];

while(i < j) {

while(arr[j] >= temp && i < j)

j--;

while(arr[i] <= temp && i < j)

i++;

if(i < j) {

t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

}

arr[left] = arr[i];

arr[i] = temp;


Quick_sort(arr,left, i - 1);

Quick_sort(arr, i + 1, right);

}


public void Insert_sort(int[] arr) {

int length = arr.length;

int[] arr_sort = new int[length];

int count = 0;

for(int i = 0;i < length; i++) {

if(count == 0) {

arr_sort[0] = arr[0];

}else if(arr[i] >= arr_sort[count - 1]) {

arr_sort[count] = arr[i];

}else if(arr[i] < arr_sort[0]) {

insert(arr,arr_sort,arr[i],0,count);

}else {

for(int j = 0;j < count - 1; j++) {

if(arr[i] >= arr_sort[j] && arr[i] < arr_sort[j+1]) {

insert(arr,arr_sort,arr[i],j+1,count);

break;

}

}

}

count++;

}

System.out.print("經過插入排序後:");

for(int i = 0 ; i < 10 ; i++)

System.out.print( arr_sort[i] +" ");

System.out.println("");

}

public void insert(int[] arr,int[] arr_sort,int value,int index,int count) {

for(int i = count; i > index; i--)

arr_sort[i] = arr_sort[i-1];

arr_sort[index] = value;

}


public void Mergesort(int[] arr,int left,int right) {

if(right - left > 0) {

int[] arr_1 = new int[(right - left)/2 + 1];

int[] arr_2 = new int[(right - left + 1)/2];

int j = 0;

int k = 0;

for(int i = left;i <= right;i++) {

if(i <= (right + left)/2) {

arr_1[j++] = arr[i];

}else {

arr_2[k++] = arr[i];

}

}

Mergesort(arr_1,0,(right - left)/2);

Mergesort(arr_2,0,(right - left - 1)/2);

Merge(arr_1,arr_2,arr);

}

}

public void Merge(int[] arr_1,int[] arr_2,int[] arr) {

int i = 0;

int j = 0;

int k = 0;

int L1 = arr_1.length;

int L2 = arr_2.length;

while(i < L1 && j < L2) {

if(arr_1[i] <= arr_2[j]) {

arr[k] = arr_1[i];

i++;

}else {

arr[k] = arr_2[j];

j++;

}

k++;

}

if(i == L1) {

for(int t = j;j < L2;j++)

arr[k++] = arr_2[j];

}else {

for(int t = i;i < L1;i++)

arr[k++] = arr_1[i];

}

}

}

若有錯誤,麻煩指正,不勝感激。

2. 常見的幾種排序演算法總結

對於非科班生的我來說,演算法似乎對我來說是個難點,查閱了一些資料,趁此來了解一下幾種排序演算法。
首先了解一下,什麼是程序

關於排序演算法通常我們所說的往往指的是內部排序演算法,即數據記錄在內存中進行排序。
排序演算法大體可分為兩種:
一種是比較排序,時間復雜度O(nlogn) ~ O(n^2),主要有:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序等。
另一種是非比較排序,時間復雜度可以達到O(n),主要有:計數排序,基數排序,桶排序等

冒泡排序它重復地走訪過要排序的元素,一次比較相鄰兩個元素,如果他們的順序錯誤就把他們調換過來,直到沒有元素再需要交換,排序完成。這個演算法的名字由來是因為越小(或越大)的元素會經由交換慢慢「浮」到數列的頂端。

選擇排序類似於冒泡排序,只不過選擇排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然後再從剩餘未排序元素中繼續尋找最小(大)元素,放到已排序序列的末尾,以此類推,直到所有元素均排序完畢。

插入排序比冒泡排序和選擇排序更有效率,插入排序類似於生活中抓撲克牌來。
插入排序具體演算法描述,以數組[3, 2, 4, 5, 1]為例。

前面三種排序演算法只有教學價值,因為效率低,很少實際使用。歸並排序(Merge sort)則是一種被廣泛使用的排序方法。
它的基本思想是,將兩個已經排序的數組合並,要比從頭開始排序所有元素來得快。因此,可以將數組拆開,分成n個只有一個元素的數組,然後不斷地兩兩合並,直到全部排序完成。
以對數組[3, 2, 4, 5, 1] 進行從小到大排序為例,步驟如下:

有了merge函數,就可以對任意數組排序了。基本方法是將數組不斷地拆成兩半,直到每一半隻包含零個元素或一個元素為止,然後就用merge函數,將拆成兩半的數組不斷合並,直到合並成一整個排序完成的數組。

快速排序(quick sort)是公認最快的排序演算法之一,有著廣泛的應用。
快速排序演算法步驟

參考:
常用排序演算法總結(一)
阮一峰-演算法總結

3. 排序演算法概述

十大排序演算法:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序、希爾排序、計數排序,基數排序,桶排序

穩定 :如果a原本在b前面,而a=b,排序之後a仍然在b的前面;
不穩定 :如果a原本在b的前面,而a=b,排序之後a可能會出現在b的後面;
排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,前一個鍵排序的結果可以為後一個鍵排序所用。

演算法的復雜度往往取決於數據的規模大小和數據本身分布性質。
時間復雜度 : 一個演算法執行所耗費的時間。
空間復雜度 :對一個演算法在運行過程中臨時佔用存儲空間大小的量度。
常見復雜度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)

在各種不同演算法中,若演算法中語句執行次數(佔用空間)為一個常數,則復雜度為O(1);
當一個演算法的復雜度與以2為底的n的對數成正比時,可表示為O(log n);
當一個演算法的復雜度與n成線性比例關系時,可表示為O (n),依次類推。

冒泡、選擇、插入排序需要兩個for循環,每次只關注一個元素,平均時間復雜度為
(一遍找元素O(n),一遍找位置O(n))
快速、歸並、堆基於分治思想,log以2為底,平均時間復雜度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相關
而希爾排序依賴於所取增量序列的性質,但是到目前為止還沒有一個最好的增量序列 。例如希爾增量序列時間復雜度為O(n²),而Hibbard增量序列的希爾排序的時間復雜度為 , 有人在大量的實驗後得出結論;當n在某個特定的范圍後希爾排序的最小時間復雜度大約為n^1.3。

從平均時間來看,快速排序是效率最高的:
快速排序中平均時間復雜度O(nlog n),這個公式中隱含的常數因子很小,比歸並排序的O(nlog n)中的要小很多,所以大多數情況下,快速排序總是優於合並排序的。

而堆排序的平均時間復雜度也是O(nlog n),但是堆排序存在著重建堆的過程,它把根節點移除後,把最後的葉子結點拿上來後需要重建堆,但是,拿上的值是要比它的兩個葉子結點要差很多的,一般要比較很多次,才能回到合適的位置。堆排序就會有很多的時間耗在堆調整上。

雖然快速排序的最壞情況為排序規模(n)的平方關系,但是這種最壞情況取決於每次選擇的基準, 對於這種情況,已經提出了很多優化的方法,比如三取樣劃分和Dual-Pivot快排。
同時,當排序規模較小時,劃分的平衡性容易被打破,而且頻繁的方法調用超過了O(nlog n)為
省出的時間,所以一般排序規模較小時,會改用插入排序或者其他排序演算法。

一種簡單的排序演算法。它反復地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。這個工作重復地進行直到沒有元素再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為元素會經由交換慢慢「浮」到數列的頂端。
1.從數組頭開始,比較相鄰的元素。如果第一個比第二個大(小),就交換它們兩個;
2.對每一對相鄰元素作同樣的工作,從開始第一對到尾部的最後一對,這樣在最後的元素應該會是最大(小)的數;
3.重復步驟1~2,重復次數等於數組的長度,直到排序完成。

首先,找到數組中最大(小)的那個元素;
其次,將它和數組的第一個元素交換位置(如果第一個元素就是最大(小)元素那麼它就和自己交換);
再次,在剩下的元素中找到最大(小)的元素,將它與數組的第二個元素交換位置。如此往復,直到將整個數組排序。
這種方法叫做選擇排序,因為它在不斷地選擇剩餘元素之中的最大(小)者。

對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
為了給要插入的元素騰出空間,我們需要將插入位置之後的已排序元素在都向後移動一位。
插入排序所需的時間取決於輸入中元素的初始順序。例如,對一個很大且其中的元素已經有序(或接近有序)的數組進行排序將會比對隨機順序的數組或是逆序數組進行排序要快得多。
總的來說,插入排序對於部分有序的數組十分高效,也很適合小規模數組。

一種基於插入排序的快速的排序演算法。簡單插入排序對於大規模亂序數組很慢,因為元素只能一點一點地從數組的一端移動到另一端。例如,如果主鍵最小的元素正好在數組的盡頭,要將它挪到正確的位置就需要N-1 次移動。
希爾排序為了加快速度簡單地改進了插入排序,也稱為縮小增量排序,同時該演算法是突破O(n^2)的第一批演算法之一。
希爾排序是把待排序數組按一定數量的分組,對每組使用直接插入排序演算法排序;然後縮小數量繼續分組排序,隨著數量逐漸減少,每組包含的元素越來越多,當數量減至 1 時,整個數組恰被分成一組,排序便完成了。這個不斷縮小的數量,就構成了一個增量序列。

在先前較大的增量下每個子序列的規模都不大,用直接插入排序效率都較高,盡管在隨後的增量遞減分組中子序列越來越大,由於整個序列的有序性也越來越明顯,則排序效率依然較高。
從理論上說,只要一個數組是遞減的,並且最後一個值是1,都可以作為增量序列使用。有沒有一個步長序列,使得排序過程中所需的比較和移動次數相對較少,並且無論待排序列記錄數有多少,演算法的時間復雜度都能漸近最佳呢?但是目前從數學上來說,無法證明某個序列是「最好的」。
常用的增量序列
希爾增量序列 :{N/2, (N / 2)/2, ..., 1},其中N為原始數組的長度,這是最常用的序列,但卻不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表達式為

歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法的一個非常典型的應用。
對於給定的一組數據,利用遞歸與分治技術將數據序列劃分成為越來越小的半子表,在對半子表排序後,再用遞歸方法將排好序的半子表合並成為越來越大的有序序列。
為了提升性能,有時我們在半子表的個數小於某個數(比如15)的情況下,對半子表的排序採用其他排序演算法,比如插入排序。
若將兩個有序表合並成一個有序表,稱為2-路歸並,與之對應的還有多路歸並。

快速排序(Quicksort)是對冒泡排序的一種改進,也是採用分治法的一個典型的應用。
首先任意選取一個數據(比如數組的第一個數)作為關鍵數據,我們稱為基準數(Pivot),然後將所有比它小的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一趟快速排序,也稱為分區(partition)操作。
通過一趟快速排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數組變成有序序列。
為了提升性能,有時我們在分割後獨立的兩部分的個數小於某個數(比如15)的情況下,會採用其他排序演算法,比如插入排序。

基準的選取:最優的情況是基準值剛好取在無序區數值的中位數,這樣能夠最大效率地讓兩邊排序,同時最大地減少遞歸劃分的次數,但是一般很難做到最優。基準的選取一般有三種方式,選取數組的第一個元素,選取數組的最後一個元素,以及選取第一個、最後一個以及中間的元素的中位數(如4 5 6 7, 第一個4, 最後一個7, 中間的為5, 這三個數的中位數為5, 所以選擇5作為基準)。
Dual-Pivot快排:雙基準快速排序演算法,其實就是用兩個基準數, 把整個數組分成三份來進行快速排序,在這種新的演算法下面,比經典快排從實驗來看節省了10%的時間。

許多應用程序都需要處理有序的元素,但不一定要求他們全部有序,或者不一定要一次就將他們排序,很多時候,我們每次只需要操作數據中的最大元素(最小元素),那麼有一種基於二叉堆的數據結構可以提供支持。
所謂二叉堆,是一個完全二叉樹的結構,同時滿足堆的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。在一個二叉堆中,根節點總是最大(或者最小)節點。
堆排序演算法就是抓住了這一特點,每次都取堆頂的元素,然後將剩餘的元素重新調整為最大(最小)堆,依次類推,最終得到排序的序列。

推論1:對於位置為K的結點 左子結點=2 k+1 右子結點=2 (k+1)
驗證:C:2 2 2+1=5 2 (2+1)=6
推論2:最後一個非葉節點的位置為 (N/2)-1,N為數組長度。
驗證:數組長度為6,(6/2)-1=2

計數排序對一定范圍內的整數排序時候的速度非常快,一般快於其他排序演算法。但計數排序局限性比較大,只限於對整數進行排序,而且待排序元素值分布較連續、跨度小的情況。
計數排序是一個排序時不比較元素大小的排序演算法。
如果一個數組里所有元素都是整數,而且都在0-K以內。對於數組里每個元素來說,如果能知道數組里有多少項小於或等於該元素,就能准確地給出該元素在排序後的數組的位置。

桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分布,利用某種函數的映射關系將數據分到有限數量的桶里,每個桶再分別排序(有可能再使用別的排序演算法或是以遞歸方式繼續使用桶排序)。
桶排序利用函數的映射關系,減少了幾乎所有的比較工作。實際上,桶排序的f(k)值的計算,其作用就相當於快排中劃分,已經把大量數據分割成了基本有序的數據塊(桶)。然後只需要對桶中的少量數據做排序即可。

常見的數據元素一般是由若干位組成的,比如字元串由若干字元組成,整數由若干位0~9數字組成。基數排序按照從右往左的順序,依次將每一位都當做一次關鍵字,然後按照該關鍵字對數組排序,同時每一輪排序都基於上輪排序後的結果;當我們將所有的位排序後,整個數組就達到有序狀態。基數排序不是基於比較的演算法。
基數是什麼意思?對於十進制整數,每一位都只可能是0~9中的某一個,總共10種可能。那10就是它的基,同理二進制數字的基為2;對於字元串,如果它使用的是8位的擴展ASCII字元集,那麼它的基就是256。

基數排序 vs 計數排序 vs 桶排序

基數排序有兩種方法:
MSD 從高位開始進行排序
LSD 從低位開始進行排序
這三種排序演算法都利用了桶的概念,但對桶的使用方法上有明顯差異:
基數排序:根據鍵值的每位數字來分配桶
計數排序:每個桶只存儲單一鍵值
桶排序:每個桶存儲一定范圍的數值

有時,待排序的文件很大,計算機內存不能容納整個文件,這時候對文件就不能使用內部排序了(我們一般的排序都是在內存中做的,所以稱之為內部排序,而外部排序是指待排序的內容不能在內存中一下子完成,它需要做內外存的內容交換),外部排序常採用的排序方法也是歸並排序,這種歸並方法由兩個不同的階段組成:
採用適當的內部排序方法對輸入文件的每個片段進行排序,將排好序的片段(成為歸並段)寫到外部存儲器中(通常由一個可用的磁碟作為臨時緩沖區),這樣臨時緩沖區中的每個歸並段的內容是有序的。
利用歸並演算法,歸並第一階段生成的歸並段,直到只剩下一個歸並段為止。

例如要對外存中4500個記錄進行歸並,而內存大小隻能容納750個記錄,在第一階段,我們可以每次讀取750個記錄進行排序,這樣可以分六次讀取,進行排序,可以得到六個有序的歸並段
每個歸並段的大小是750個記錄,並將這些歸並段全部寫到臨時緩沖區(由一個可用的磁碟充當)內了,這是第一步的排序結果。
完成第二步該怎麼做呢?這時候歸並演算法就有用處了。

4. c語言插入法排序的演算法步驟

演算法描述
一般來說,插入排序都採用in-place在數組上實現。具體演算法描述如下:
從第一個元素開始,該元素可以認為已經被排序
取出下一個元素,在已經排序的元素序列中從後向前掃描
如果該元素(已排序)大於新元素,將該元素移到下一位置
重復步驟3,直到找到已排序的元素小於或者等於新元素的位置
將新元素插入到該位置後
重復步驟2~5
如果比較操作的代價比交換操作大的話,可以採用二分查找法來減少比較操作的數目。該演算法可以認為是插入排序的一個變種,稱為二分查找排序。
范常式式碼
void insertion_sort(int array[], int first, int last)
{
int i,j;
int temp;
for (i = first+1; i<=last;i++)
{
temp = array[i];
j=i-1;

while((j>=first) && (array[j] > temp))
{
array[j+1] = array[j];
j--;
}
array[j+1] = temp;
}
}

5. 八大經典排序演算法原理及實現

該系列文章主要是記錄下自己暑假這段時間的學習筆記,暑期也在實習,抽空學了很多,每個方面的知識我都會另起一篇博客去記錄,每篇頭部主要是另起博客的鏈接。

冒泡排序演算法應該是大家第一個接觸的演算法,其原理都應該懂,但我還是想以自己的語言來敘述下其步奏:

按照計算時間復雜度的規則,去掉常數、去掉最高項系數,其復雜度為O(N^2)
冒泡排序及其復雜度分析

空間復雜度就是在交換元素時那個臨時變數所佔的內存

給定一個整數序列{6,1,2,3,4},每完成一次外層循環的結果為:

我們發現第一次外層循環之後就排序成功了,但是還是會繼續循環下去,造成了不必要的時間復雜度,怎麼優化?

冒泡排序都是相鄰元素的比較,當相鄰元素相等時並不會交換,因此冒泡排序演算法是穩定性演算法

插入排序是對冒泡排序的一種改進

插入排序的思想是數組是部分有序的,再將無序的部分插入有序的部分中去,如圖:
(圖片來自 這里 )

空間復雜度就是在交換元素時那個臨時變數所佔的內存

插入排序的優化,有兩種方案:

文章後面會給出這兩種排序演算法

由於插入排序也是相鄰元素的比較,遇到相等的相鄰元素時不會發生交換,也不會造成相等元素之間的相對位置發生變化

其原理是從未排序的元素中選出最小值(最大值)放在已排序元素的後面

空間復雜度就是在交換元素時那個臨時變數所佔的內存

選擇排序是不穩定的,比如 3 6 3 2 4,第一次外層循環中就會交換第一個元素3和第四個元素2,那麼就會導致原序列的兩個3的相對位置發生變化

希爾排序算是改良版的插入排序演算法,所以也稱為希爾插入排序演算法

其原理是將序列分割成若乾子序列(由相隔某個 增量 的元素組成的),分別進行直接插入排序;接著依次縮小增量繼續進行排序,待整個序列基本有序時,再對全體元素進行插入排序,我們知道當序列基本有序時使用直接插入排序的效率很高。
上述描述只是其原理,真正的實現可以按下述步奏來:

希爾排序的效率取決於 增量值gap 的選取,這涉及到數學上尚未解決的難題,但是某些序列中復雜度可以為O(N 1.3),當然最好肯定是O(N),最壞是O(N 2)

空間復雜度就是在交換元素時那個臨時變數所佔的內存

希爾排序並不只是相鄰元素的比較,有許多跳躍式的比較,難免會出現相同元素之間的相對位置發生變化,所以希爾排序是不穩定的

理解堆排序,就必須得先知道什麼是堆?

二叉樹的特點:

當父節點的值總是大於子結點時為 最大堆 ;反之為 最小堆 ,下圖就為一個二叉堆

一般用數組來表示堆,下標為 i 的結點的父結點下標為(i-1)/2;其左右子結點分別為 (2 i + 1)、(2 i + 2)

怎麼將給定的數組序列按照堆的性質,調整為堆?

這里以建立最小堆為示例,

很明顯對於其葉子結點來說,已經是一個合法的子堆,所以做堆調整時,子節點沒有必要進行,這里只需從結點為A[4] = 50的結點開始做堆調整,即從(n/2 - 1)位置處向上開始做堆調整:

由於每次重新恢復堆的時間復雜度為O(logN),共N - 1次重新恢復堆操作,再加上前面建立堆時N / 2次向下調整,每次調整時間復雜度也為O(logN),二次操作時間相加還是O(N logN)。故堆排序的時間復雜度為O(N * logN)。

空間復雜度就是在交換元素時那個臨時變數所佔的內存

由於堆排序也是跨越式的交換數據,會導致相同元素之間的相對位置發生變化,則演算法不穩定。比如 5 5 5 ,堆化數組後將堆頂元素5與堆尾元素5交換,使得第一個5和第三個5的相對位置發生變化

歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

快速排序在應該是大家經常看到、聽到的演算法,但是真正默寫出來是有難度的。希望大家看了下面 挖坑填數 方法後,能快速寫出、快速排序。

其原理就這么幾句話,但是現實起來並不是這么簡單,我們採取流行的一種方式 挖坑填數分治法

對於序列: 72 6 57 88 60 42 83 73 48 85

數組變為: 48 6 57 88 60 42 83 73 88 85
再重復上面的步驟,先從後向前找,再從前向後找:

數組變為: 48 6 57 42 60 72 83 73 88 85
可以看出a[5]前面的數字都小於它,a[5]後面的數字都大於它。因此再對a[0…4]和a[6…9]這二個子區間重復上述步驟就可以了

空間復雜度,主要是遞歸造成的棧空間的使用:

快速排序的優化主要在於基準數的選取

快速排序也是跨越式比較及交換數據,易導致相同元素之間的相對位置發生變化,所以快速排序不穩定

前面也說了二分查找排序是改進的插入排序,不同之處在於,在有序區間查找新元素插入位置時,為了減少比較次數提高效率,採用二分查找演算法進行插入位置的確定
具體步驟,設數組為a[0…n]:

二分查找插入位置,因為不是查找相等值,而是基於比較查插入合適的位置,所以必須查到最後一個元素才知道插入位置。
二分查找最壞時間復雜度:當2^X>=n時,查詢結束,所以查詢的次數就為x,而x等於log2n(以2為底,n的對數)。即O(log2n)
所以,二分查找排序比較次數為:x=log2n
二分查找插入排序耗時的操作有:比較 + 後移賦值。時間復雜度如下:

二分查找排序在交換數據時時進行移動,當遇到有相等值插入時也只會插入其後面,不會影響其相等元素之間的相對位置,所以是穩定的

白話經典演算法排序
冒泡排序選擇排序
快速排序復雜度分析
優化的插入排序

6. php幾種排序演算法實例詳解

四種排序演算法的PHP實現:
1)插入排序(InsertionSort)的基本思想是:
每次將一個待排序的記錄,按其關鍵字大小插入到前面已經排好序的子文件中的適當位置,直到全部記錄插入完成為止。

2)選擇排序(SelectionSort)的基本思想是:
每一趟從待排序的記錄中選出關鍵字最小的記錄,順序放在已排好序的子文件的最後,直到全部記錄排序完畢。

3)冒泡排序的基本思想是:
兩兩比較待排序記錄的關鍵字,發現兩個記錄的次序相反時即進行交換,直到沒有反序的記錄為止。

4)快速排序實質上和冒泡排序一樣,都是屬於交換排序的一種應用。所以基本思想和上面的冒泡排序是一樣的。

1.sort.php文件如下:

<?php
classSort{
private$arr=array();
private$sort='insert';
private$marker='_sort';
private$debug=TRUE;
/**
*構造函數
*
*@paramarray例如:
$config=array(
'arr'=>array(22,3,41,18),//需要排序的數組值
'sort'=>'insert',//可能值:insert,select,bubble,quick
'debug'=>TRUE//可能值:TRUE,FALSE
)
*/
publicfunctionconstruct($config=array()){
if(count($config)>0){
$this->_init($config);
}
}
/**
*獲取排序結果
*/
publicfunctiondisplay(){
return$this->arr;
}
/**
*初始化
*
*@paramarray
*@returnbool
*/
privatefunction_init($config=array()){
//參數判斷
if(!is_array($config)ORcount($config)==0){
if($this->debug===TRUE){
$this->_log("sort_init_param_invaild");
}
returnFALSE;
}
//初始化成員變數
foreach($configas$key=>$val){
if(isset($this->$key)){
$this->$key=$val;
}
}
//調用相應的成員方法完成排序
$method=$this->sort.$this->marker;
if(!method_exists($this,$method)){
if($this->debug===TRUE){
$this->_log("sort_method_invaild");
}
returnFALSE;
}
if(FALSE===($this->arr=$this->$method($this->arr)))
returnFALSE;
returnTRUE;
}
/**
*插入排序
*
*@paramarray
*@returnbool
*/
privatefunctioninsert_sort($arr){
//參數判斷
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(insert)_invaild");
}
returnFALSE;
}
//具體實現
$count=count($arr);
for($i=1;$i<$count;$i++){
$tmp=$arr[$i];
for($j=$i-1;$j>=0;$j--){
if($arr[$j]>$tmp){
$arr[$j+1]=$arr[$j];
$arr[$j]=$tmp;
}
}
}
return$arr;
}
/**
*選擇排序
*
*@paramarray
*@returnbool
*/
privatefunctionselect_sort($arr){
//參數判斷
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(select)_invaild");
}
returnFALSE;
}
//具體實現
$count=count($arr);
for($i=0;$i<$count-1;$i++){
$min=$i;
for($j=$i+1;$j<$count;$j++){
if($arr[$min]>$arr[$j])$min=$j;
}
if($min!=$i){
$tmp=$arr[$min];
$arr[$min]=$arr[$i];
$arr[$i]=$tmp;
}
}
return$arr;
}
/**
*冒泡排序
*
*@paramarray
*@returnbool
*/
privatefunctionbubble_sort($arr){
//參數判斷
if(!is_array($arr)ORcount($arr)==0){
if($this->debug===TRUE){
$this->_log("sort_array(bubble)_invaild");
}
returnFALSE;
}
//具體實現
$count=count($arr);
for($i=0;$i<$count;$i++){
for($j=$count-1;$j>$i;$j--){
if($arr[$j]<$arr[$j-1]){
$tmp=$arr[$j];
$arr[$j]=$arr[$j-1];
$arr[$j-1]=$tmp;
}
}
}
return$arr;
}
/**
*快速排序
*@bywww.5wx.org
*@paramarray
*@returnbool
*/
privatefunctionquick_sort($arr){
//具體實現
if(count($arr)<=1)return$arr;
$key=$arr[0];
$left_arr=array();
$right_arr=array();
for($i=1;$i<count($arr);$i++){
if($arr[$i]<=$key)
$left_arr[]=$arr[$i];
else
$right_arr[]=$arr[$i];
}
$left_arr=$this->quick_sort($left_arr);
$right_arr=$this->quick_sort($right_arr);

returnarray_merge($left_arr,array($key),$right_arr);
}
/**
*日誌記錄
*/
privatefunction_log($msg){
$msg='date['.date('Y-m-dH:i:s').']'.$msg.' ';
return@file_put_contents('sort_err.log',$msg,FILE_APPEND);
}
}
/*Endoffilesort.php*/
/*Locationhtdocs/sort.php*/
2.sort_demo.php文件如下:

<?php
require_once('sort.php');
$config=array(
'arr'=>array(23,22,41,18,20,12,200303,2200,1192),
//需要排序的數組值
'sort'=>'select',
//可能值:insert,select,bubble,quick
'debug'=>TRUE
//可能值:TRUE,FALSE
);
$sort=newSort($config);
//var_mp($config['arr']);
var_mp($sort->display());
/*Endofphp*/

閱讀全文

與插入排序運用了什麼演算法設計技術相關的資料

熱點內容
android獲取窗口大小 瀏覽:178
程序員為世界帶來的貢獻 瀏覽:214
程序員招聘自薦信 瀏覽:693
魔獸鍵位設置命令宏 瀏覽:645
程序員沒有目標了 瀏覽:828
搶答器c程序編程 瀏覽:703
什麼app可以自己玩 瀏覽:76
刨客app是什麼 瀏覽:963
cad輸入命令欄不見了 瀏覽:834
做故事集可以用什麼app 瀏覽:692
qq郵箱發送壓縮包 瀏覽:672
程序員桌面機器人 瀏覽:589
xjr快速開發平台源碼 瀏覽:159
java介面runnable 瀏覽:31
python怎麼運行web伺服器 瀏覽:349
notepad編程代碼 瀏覽:740
什麼安卓的毛病最少 瀏覽:611
hp的pjl設備訪問命令 瀏覽:635
googlewebp圖片壓縮技術 瀏覽:215
tbc薩滿加血宏命令 瀏覽:757