『壹』 C語言中的選擇排序法是什麼
選擇排序(Selection sort)是一種簡單直觀的排序演算法。工作原理是每一次從待排序的數據元素中選出最小(或最大)的一個元素,存放在序列的起始位置,直到全部待排序的數據元素排完。
以下是一個實現選擇排序的例子:
#defineSWAP(x,y,t)((t)=(x),(x)=(y),(y)=(t))
//將list中的n個數據,通過選擇排序演算法排序。
voidselete_sort(intlist[],intn)
{
inti,j,min,temp;
for(i=0;i<n-1;i++){
min=i;
for(j=i+1;j<n;j++)//找出最小元素的下標。
if(list[j]<list[min])
min=j;
SWAP(list[i],list[min],temp);//交換最小元素到當前起始位置。
}
}
『貳』 C語言選擇排序法有哪些
1、穩定排序和非穩定排序
簡單地說就是所有相等的數經過某種排序方法後,仍能保持它們在排序之前的相對次序,我
們就
說這種排序方法是穩定的。反之,就是非穩定的。
比如:一組數排序前是a1,a2,a3,a4,a5,其中a2=a4,經過某種排序後為a1,a2,a4,a3,a5,
則我們說這種排序是穩定的,因為a2排序前在a4的前面,排序後它還是在a4的前面。假如變
成a1,a4,
a2,a3,a5就不是穩定的了。
2、內排序和外排序
在排序過程中,所有需要排序的數都在內存,並在內存中調整它們的存儲順序,稱為內排序;
在排序過程中,只有部分數被調入內存,並藉助內存調整數在外存中的存放順序排序方法稱
為外排序。
3、演算法的時間復雜度和空間復雜度
所謂演算法的時間復雜度,是指執行演算法所需要的計算工作量。
一個演算法的空間復雜度,一般是指執行這個演算法所需要的內存空間。
======================================================================
==========
*/
/*
================================================
功能:選擇排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,選出最小的一個數與第一個位置的數交換;
然後在剩下的數當中再找最小的與第二個位置的數交換,如此循環
到倒數第二個數和最後一個數比較為止。
選擇排序是不穩定的。演算法復雜度O(n2)--[n的平方]
=====================================================
*/
voidselect_sort(int*x,intn)
{
inti,j,min,t;
for(i=0;i<n-1;i++)/*要選擇的次數:0~n-2共n-1次*/
{
min=i;/*假設當前下標為i的數最小,比較後再調整*/
for(j=i+1;j<n;j++)/*循環找出最小的數的下標是哪個*/
{
if(*(x+j)<*(x+min))
{
min=j;/*如果後面的數比前面的小,則記下它的下標*/
}
}
if(min!=i)/*如果min在循環中改變了,就需要交換數據*/
{
t=*(x+i);
*(x+i)=*(x+min);
*(x+min)=t;
}
}
}
/*
================================================
功能:直接插入排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,假設前面(n-1)[n>=2]個數已經是排
好順序的,現在要把第n個數插到前面的有序數中,使得這n個數
也是排好順序的。如此反復循環,直到全部排好順序。
直接插入排序是穩定的。演算法時間復雜度O(n2)--[n的平方]
=====================================================
*/
voidinsert_sort(int*x,intn)
{
inti,j,t;
for(i=1;i<n;i++)/*要選擇的次數:1~n-1共n-1次*/
{
/*
暫存下標為i的數。注意:下標從1開始,原因就是開始時
第一個數即下標為0的數,前面沒有任何數,單單一個,認為
它是排好順序的。
*/
t=*(x+i);
for(j=i-1;j>=0&&t<*(x+j);j--)/*注意:j=i-1,j--,這里就是下標為i的數,在它
列中找插入位置。*/
{
*(x+j+1)=*(x+j);/*如果滿足條件就往後挪。最壞的情況就是t比下標為0的數都
放在最前面,j==-1,退出循環*/
}
*(x+j+1)=t;/*找到下標為i的數的放置位置*/
}
}
/*
================================================
功能:冒泡排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在要排序的一組數中,對當前還未排好序的范圍內的全部數,自上
而下對相鄰的兩個數依次進行比較和調整,讓較大的數往下沉,較
小的往上冒。即:每當兩相鄰的數比較後發現它們的排序與排序要
求相反時,就將它們互換。
下面是一種改進的冒泡演算法,它記錄了每一遍掃描後最後下沉數的
位置k,這樣可以減少外層循環掃描的次數。
冒泡排序是穩定的。演算法時間復雜度O(n2)--[n的平方]
=====================================================
*/
voidbubble_sort(int*x,intn)
{
intj,k,h,t;
for(h=n-1;h>0;h=k)/*循環到沒有比較范圍*/
{
for(j=0,k=0;j<h;j++)/*每次預置k=0,循環掃描後更新k*/
{
if(*(x+j)>*(x+j+1))/*大的放在後面,小的放到前面*/
{
t=*(x+j);
*(x+j)=*(x+j+1);
*(x+j+1)=t;/*完成交換*/
k=j;/*保存最後下沉的位置。這樣k後面的都是排序排好了的。*/
}
}
}
}
/*
================================================
功能:希爾排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
*/
/*
====================================================
演算法思想簡單描述:
在直接插入排序演算法中,每次插入一個數,使有序序列只增加1個節點,
並且對插入下一個數沒有提供任何幫助。如果比較相隔較遠距離(稱為
增量)的數,使得數移動時能跨過多個元素,則進行一次比較就可能消除
多個元素交換。D.L.shell於1959年在以他名字命名的排序演算法中實現
了這一思想。演算法先將要排序的一組數按某個增量d分成若干組,每組中
記錄的下標相差d.對每組中全部元素進行排序,然後再用一個較小的增量
對它進行,在每組中再進行排序。當增量減到1時,整個要排序的數被分成
一組,排序完成。
下面的函數是一個希爾排序演算法的一個實現,初次取序列的一半為增量,
以後每次減半,直到增量為1。
希爾排序是不穩定的。
=====================================================
*/
voidshell_sort(int*x,intn)
{
inth,j,k,t;
for(h=n/2;h>0;h=h/2)/*控制增量*/
{
for(j=h;j<n;j++)/*這個實際上就是上面的直接插入排序*/
{
t=*(x+j);
for(k=j-h;(k>=0&&t<*(x+k));k-=h)
{
*(x+k+h)=*(x+k);
}
*(x+k+h)=t;
}
}
}
/*
================================================
功能:快速排序
輸入:數組名稱(也就是數組首地址)、數組中起止元素的下標
================================================
*/
/*
====================================================
演算法思想簡單描述:
快速排序是對冒泡排序的一種本質改進。它的基本思想是通過一趟
掃描後,使得排序序列的長度能大幅度地減少。在冒泡排序中,一次
掃描只能確保最大數值的數移到正確位置,而待排序序列的長度可能只
減少1。快速排序通過一趟掃描,就能確保某個數(以它為基準點吧)
的左邊各數都比它小,右邊各數都比它大。然後又用同樣的方法處理
它左右兩邊的數,直到基準點的左右只有一個元素為止。它是由
C.A.R.Hoare於1962年提出的。
顯然快速排序可以用遞歸實現,當然也可以用棧化解遞歸實現。下面的
函數是用遞歸實現的,有興趣的朋友可以改成非遞歸的。
快速排序是不穩定的。最理想情況演算法時間復雜度O(nlog2n),最壞O(n2)
=====================================================
*/
voidquick_sort(int*x,intlow,inthigh)
{
inti,j,t;
if(low<high)/*要排序的元素起止下標,保證小的放在左邊,大的放在右邊。這里以下標為
low的元素為基準點*/
{
i=low;
j=high;
t=*(x+low);/*暫存基準點的數*/
while(i<j)/*循環掃描*/
{
while(i<j&&*(x+j)>t)/*在右邊的只要比基準點大仍放在右邊*/
{
j--;/*前移一個位置*/
}
if(i<j)
{
*(x+i)=*(x+j);/*上面的循環退出:即出現比基準點小的數,替換基準點的數*/
i++;/*後移一個位置,並以此為基準點*/
}
while(i<j&&*(x+i)<=t)/*在左邊的只要小於等於基準點仍放在左邊*/
{
i++;/*後移一個位置*/
}
if(i<j)
{
*(x+j)=*(x+i);/*上面的循環退出:即出現比基準點大的數,放到右邊*/
j--;/*前移一個位置*/
}
}
*(x+i)=t;/*一遍掃描完後,放到適當位置*/
quick_sort(x,low,i-1); /*對基準點左邊的數再執行快速排序*/
quick_sort(x,i+1,high); /*對基準點右邊的數再執行快速排序*/
}
}
/*
================================================
功能:堆排序
輸入:數組名稱(也就是數組首地址)、數組中元素個數
================================================
『叄』 什麼是時間復雜度、空間復雜度
1、時間復雜度是指執行演算法所需要的計算工作量。
時間復雜度是一個函數,它定性描述了該演算法的運行時間。這是一個關於代表演算法輸入值的字元串的長度的函數。時間復雜度常用大O符號表述,不包括這個函數的低階項和首項系數。
2、空間復雜度是指執行這個演算法所需要的內存空間。
空間復雜度需要考慮在運行過程中為局部變數分配的存儲空間的大小,它包括為參數表中形參變數分配的存儲空間和為在函數體中定義的局部變數分配的存儲空間兩個部分。
空間復雜度也就是對一個演算法在運行過程中臨時佔用存儲空間大小的量度,記做S(n)=O(f(n))。比如直接插入排序的時間復雜度是O(n^2),空間復雜度是O(1) 。
(3)c語言排序演算法時間和空間復雜度擴展閱讀:
時間復雜度和空間復雜度往往是相互影響的。當追求一個較好的時間復雜度時,可能會使空間復雜度的性能變差,即可能導致佔用較多的存儲空間;相反的當追求一個較好的空間復雜度時,就可能會使時間復雜度的性能變差,即可能導致佔用較長的運行時間。
因此,當設計一個演算法(特別是大型演算法)時,要綜合考慮演算法的各項性能,演算法的使用頻率,演算法處理的數據量的大小,演算法描述語言的特性,演算法運行的機器系統環境等各方面因素,才能夠設計出比較好的演算法。演算法的時間復雜度和空間復雜度合稱為演算法的復雜度。
『肆』 常見排序演算法以及對應的時間復雜度和空間復雜度
排序 :將雜亂無章的數據,按照一定的方法進行排列的過程叫做排序。
排序大的分類可分為 內排序 和 外排序 ,不需要訪問外存就能進行排序的叫做內排序。
排序也可以分為 穩定排序 和 不穩定排序
穩定排序 :假設在待排序的文件中,存在兩個或兩個以上的記錄具有相同的關鍵字,在用某種排序法排序後,若這些相同關鍵字的元素的相對次序仍然不變,則這種排序方法是穩定的。即;若 a[i]=a[j] , a[i] 在 a[j] 之前,經過排序後 a[i] 依然在 a[j] 之前。冒泡排序、直接插入排序、二分插入排序、歸並排序,基數排序都是穩定排序。
不穩定排序 :直接選擇排序、堆排序、快速排序、希爾排序,猴子排序。
以升序為例,比較相鄰的元素,如果第一個比第二個大,則交換他們兩個。如果兩個元素一樣大,則繼續比較下一對。所以冒泡排序是一種穩定排序。
選擇一個基準元素,通常選擇第一個元素或者最後一個元素,通過一趟掃描,將待排序列分成兩部分,一部分比基準元素小,一部分大於等於基準元素,此時基準元素在其排好序後的正確位置,然後再用同樣的方法遞歸地排序劃分的兩部分。快速排序是不穩定排序。
將序列分為兩個部分{{有序序列},{無序}},每次處理就是將無序數列的第一個元素與有序數列的元素從後往前逐個進行比較,找出插入位置,將該元素插入到有序數列的合適位置中。如果碰到相等的元素,就會把它插入到想等元素後面,順序不會改變,所以直接插入排序是穩定排序。
在直接插入排序的基礎上,對有序序列進行劃分。例如:序列為 {{a[0]......a[i-1]},a[i]} 其中 {a[0]......a[i-1]} 為有序序列,取 a[(i-1)/2] ,將其與 a[i] 比較,即可確定 a[i] 的范圍 (a[0]...a[(i-1)/2] 或者 a[(i-1)/2]...a[i-1]) ,然後繼續在已確定的范圍內進行二分。范圍依次縮小為: 1/2、1/4、1/8、1/16...... 可快速確定a[i]應該插入的位置。二分插入排序也是穩定排序。
將整個序列分割成若干個小的子序列,每個子序列內分別進行插入排序。一般情況下步長取n/2。直到最後一次步長為1,即所有元素在一個組中進行排序。由於希爾排序是先將整個序列劃分為多個子序列進行排序,相同的元素順序在這個過程中順序可能會被打亂,所以希爾排序是不穩定排序。
從待排序的數據元素中,選出最小或最大的元素與序列第一個數交換。直到所有數據排完。直接選擇排序是不穩定排序。例如: {3,3,1} ,第一次排序就將1和第一個3交換,想等元素的順序改變了。
以n=10的一個數組49, 38, 65, 97, 26, 13, 27, 49, 55, 4為例
堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進。
最大堆:每個節點的值都大於等於它的孩子節點。
最小堆:每個節點的值都小於等於它的孩子節點。
最大堆第0個數據是最大數,最小堆第0個數據是最小數。
堆排序是不穩定排序
思想
歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
如何將兩個有序序列合並?(升序)
{a[0]......a[i-1]},{b[0]......b[j-1]}
若 b[0]<a[0] ,取 b[0] 放入數組 c 中,然後繼續比較數組 a 和 b 中的第一個元素,直到數組 a 和 b 中最後一對元素比較完成。
思想
將數組分成二組 a , b 如果這二組組內的數據都是有序的,那麼就可以按照上述方法對這二組數據進行排序。如果這二組數據是無序的?
可以將 a , b 組各自再分成二組。遞歸操作,直到每個小組只有一個數據,每個小組只有一個元素所以我們可以認為它已經是有序序列,然後進行合並。
先分解後合並。
歸並排序是穩定排序
將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。從最低位起從0-9依次掃描序列,一邊掃描一邊將掃描到的數據加到新的序列中,得到一個序列。然後比較高一位,重復上述操作,直到最高位排序完成。數列就變成一個有序序列。基數排序是穩定排序。
以全是二位數的序列舉例
無限猴子定理 :指一隻猴子隨機在打字機鍵盤上按鍵,最後必然可以打出法國國家圖書館的每本圖書。
時間復雜度最低1次,最高可執行到世界的盡頭。。。