導航:首頁 > 源碼編譯 > 圖路徑搜索演算法

圖路徑搜索演算法

發布時間:2023-10-11 08:57:56

『壹』 A*演算法——啟發式路徑搜索

A*是一種路徑搜索演算法,比如為游戲中的角色規劃行動路徑。

A* 演算法的輸入是, 起點(初始狀態) 終點(目標狀態) ,以及兩點間 所有可能的路徑 ,以及涉及到的 中間節點(中間狀態) ,每兩個節點間的路徑的 代價

一般還需要某種 啟發函數 ,即從任意節點到終點的近似代價,啟發函數能夠非常快速的估算出該代價值。

輸出是從 起點到終點的最優路徑 ,即代價最小。同時,好的啟發函數將使得這一搜索運算盡可能高效,即搜索盡量少的節點/可能的路徑。

f(n)=g(n)+h(n)

f(n) 是從初始狀態經由狀態n到目標狀態的代價估計

g(n) 是在狀態空間中從初始狀態到狀態n的實際代價

h(n) 是從狀態n到目標狀態的最佳路徑的估計代價

A*演算法是從起點開始,檢查所有可能的擴展點(它的相鄰點),對每個點計算g+h得到f,在所有可能的擴展點中,選擇f最小的那個點進行擴展,即計算該點的所有可能擴展點的f值,並將這些新的擴展點添加到擴展點列表(open list)。當然,忽略已經在列表中的點、已經考察過的點。

不斷從open list中選擇f值最小的點進行擴展,直到到達目標點(成功找到最優路徑),或者節點用完,路徑搜索失敗。

演算法步驟:

參考

A* 演算法步驟的詳細說明請參考 A*尋路演算法 ,它包含圖文案例清楚的解釋了A*演算法計算步驟的一些細節,本文不再詳細展開。

看一下上面參考文檔中的案例圖,最終搜索完成時,藍色邊框是close list中的節點,綠色邊框是open list中的節點,每個方格中三個數字,左上是f(=g+h),左下是g(已經過路徑的代價),右下是h(估計未經過路徑的代價)。藍色方格始終沿著f值最小的方向搜索前進,避免了對一些不好的路徑(f值較大)的搜索。(圖片來自 A*尋路演算法 )

現在我們可以理解,A*演算法中啟發函數是最重要的,它有幾種情況:

1) h(n) = 0
一種極端情況,如果h(n)是0,則只有g(n)起作用,此時A*演變成Dijkstra演算法,這保證能找到最短路徑。但效率不高,因為得不到啟發。

2) h(n) < 真實代價
如果h(n)經常都比從n移動到目標的實際代價小(或者相等),則A*保證能找到一條最短路徑。h(n)越小,A*擴展的結點越多,運行就得越慢。越接近Dijkstra演算法。

3) h(n) = 真實代價
如果h(n)精確地等於從n移動到目標的代價,則A*將會僅僅尋找最佳路徑而不擴展別的任何結點,這會運行得非常快。盡管這不可能在所有情況下發生,你仍可以在一些特殊情況下讓它們精確地相等(譯者:指讓h(n)精確地等於實際值)。只要提供完美的信息,A*會運行得很完美,認識這一點很好。

4) h(n) > 真實代價
如果h(n)有時比從n移動到目標的實際代價高,則A*不能保證找到一條最短路徑,但它運行得更快。

5) h(n) >> 真實代價
另一種極端情況,如果h(n)比g(n)大很多,則只有h(n)起作用,A*演變成BFS演算法。

關於啟發函數h、Dijkstra演算法、BFS(最佳優先搜索)演算法、路徑規劃情況下啟發函數的選擇、演算法實現時List的數據結構、演算法變種等等更多問題,請參考: A*演算法

『貳』 bfs演算法是什麼

bfs演算法寬度優先搜索演算法(又稱廣度優先搜索)是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型。Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。

與深度優先搜索的對比

1、把根節點壓入棧中。

2、每次從棧中彈出一個元素,搜索所有在它下一級的元素,把這些元素壓入棧中。並把這個元素記為它下一級元素的前驅。

3、找到所要找的元素時結束程序。

4、如果遍歷整個樹還沒有找到,結束程序。

『叄』 圖論基礎-1.查找所有路徑

工作中某塊需求涉及到查找兩點之間全部路徑的需求,嘗試利用圖的演算法來解決這一問題。
目標:找出途中從開始到結束節點中間的所有路徑

圖是網路結構的抽象模型。圖是一組由邊連接的節點(或頂點),任何二元關系都可以用圖來表示。
一個圖G=(V, E)由以下兀素組成:

由一條邊連接在一起的頂點稱為相鄰頂點 比如,A和B是相鄰的
一個頂點的度是其相鄰頂點的數量 比如,A和其他三個頂點相連接,因此,A的度為3
路徑是頂點v1, v2, ...vk的一個連續序列 以上圖為例, 其中包含路徑A B E I 和 A C D G。

用例:

1.鄰接矩陣:(Adjacency Matrix)適用於稠密圖(完全圖)

2.鄰接表(Adjacency Lists)適用於稀疏圖

和樹數據結構類似,我們可以訪問圖的所有節點。有兩種演算法可以對圖進行遍歷:

1.將圖抽象成用例

2生成鄰接矩陣

3獲取所有路徑

參考文檔:
https://juejin.im/post/5de7c053518825125d1497e2
https://juejin.im/post/5a32688b5188254dd9366d6a
不使用遞歸的生成路徑方法: https://juejin.im/entry/5d849fb45188255a8b635058

『肆』 什麼是路徑搜索演算法

舉個例子你大概就明白了,假設從上海東方明珠電視塔到北京天安門有N條線路,可以上海-天津-北京,上海-南京-北京,上海-廣州-西藏-北京等等等,選擇一條需要的線路這就是路徑搜索,用來實現該選擇的演算法是路徑搜索演算法,可以選擇最短路徑,關鍵路徑,如果有費用(權值)就可以選擇最便宜路徑(權最小),如果有路徑需用時(飛機、火車,有些地方只有單一交通工具)就可以選擇時間最短路徑
用於計算機中的路徑搜索就比較廣泛了,但大體就是根據上述情況變化來得

『伍』 演算法 地圖上如何搜索一個點附近的點

這個還是要問程序猿,現在比較流行A*演算法,至於網路是否開發出了新的演算法不得而知,畢竟沒有完全相同的程序。
給你看一篇文獻:
地圖中最短路徑的搜索演算法研究
學生:李小坤 導師:董巒
摘要:目前為止, 國內外大量專家學者對「最短路徑問題」進行了深入的研究。本文通過理論分析, 結合實際應用,從各個方面較系統的比較廣度優先搜索演算法(BFS)、深度優先搜索演算法(DFS)、A* 演算法的優缺點。
關鍵詞:最短路徑演算法;廣度優先演算法;深度優先演算法;A*演算法;
The shortest path of map's search algorithm
Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic.
Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm;
前言:
最短路徑問題是地理信息系統(GIS)網路分析的重要內容之一,而且在圖論中也有著重要的意義。實際生活中許多問題都與「最短路徑問題」有關, 比如: 網路路由選擇, 集成電路設計、布線問題、電子導航、交通旅遊等。本文應用深度優先演算法,廣度優先演算法和A*演算法,對一具體問題進行討論和分析,比較三種算的的優缺點。

在地圖中最短路徑的搜索演算法研究中,每種演算法的優劣的比較原則主要遵循以下三點:[1]
(1)演算法的完全性:提出一個問題,該問題存在答案,該演算法能夠保證找到相應的答案。演算法的完全性強是演算法性能優秀的指標之一。
(2)演算法的時間復雜性: 提出一個問題,該演算法需要多長時間可以找到相應的答案。演算法速度的快慢是演算法優劣的重要體現。
(3)演算法的空間復雜性:演算法在執行搜索問題答案的同時,需要多少存儲空間。演算法佔用資源越少,演算法的性能越好。
地圖中最短路徑的搜索演算法:
1、廣度優先演算法
廣度優先演算法(Breadth-First-Search),又稱作寬度優先搜索,或橫向優先搜索,是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型,Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。廣度優先演算法其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。
廣度優先搜索演算法偽代碼如下:[2-3]
BFS(v)//廣度優先搜索G,從頂點v開始執行
//所有已搜索的頂點i都標記為Visited(i)=1.
//Visited的初始分量值全為0
Visited(v)=1;
Q=[];//將Q初始化為只含有一個元素v的隊列
while Q not null do
u=DelHead(Q);
for 鄰接於u的所有頂點w do
if Visited(w)=0 then
AddQ(w,Q); //將w放於隊列Q之尾
Visited(w)=1;
endif
endfor
endwhile
end BFS
這里調用了兩個函數:AddQ(w,Q)是將w放於隊列Q之尾;DelHead(Q)是從隊列Q取第一個頂點,並將其從Q中刪除。重復DelHead(Q)過程,直到隊列Q空為止。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
時間復雜度:最差情形下,BFS必須尋找所有到可能節點的所有路徑,因此其時間復雜度為,其中|V|是節點的數目,而 |E| 是圖中邊的數目。
空間復雜度:因為所有節點都必須被儲存,因此BFS的空間復雜度為,其中|V|是節點的數目,而|E|是圖中邊的數目。另一種說法稱BFS的空間復雜度為O(B),其中B是最大分支系數,而M是樹的最長路徑長度。由於對空間的大量需求,因此BFS並不適合解非常大的問題。[4-5]
2、深度優先演算法
深度優先搜索演算法(Depth First Search)英文縮寫為DFS,屬於一種回溯演算法,正如演算法名稱那樣,深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。[6]其過程簡要來說是沿著頂點的鄰點一直搜索下去,直到當前被搜索的頂點不再有未被訪問的鄰點為止,此時,從當前輩搜索的頂點原路返回到在它之前被搜索的訪問的頂點,並以此頂點作為當前被搜索頂點。繼續這樣的過程,直至不能執行為止。

『陸』 bfs演算法是什麼

廣度優先搜索演算法(英語:Breadth-First Search,縮寫為BFS),又譯作寬度優先搜索,或橫向優先搜索,是一種圖形搜索演算法。

簡單的說,BFS是從根節點開始,沿著樹的寬度遍歷樹的節點。如果所有節點均被訪問,則演算法中止。廣度優先搜索的實現一般採用open-closed表。

作法

BFS是一種暴力搜索演算法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能地址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。

從演算法的觀點,所有因為展開節點而得到的子節點都會被加進一個先進先出的隊列中。

一般的實現里,其鄰居節點尚未被檢驗過的節點會被放置在一個被稱為open的容器中(例如隊列或是鏈表),而被檢驗過的節點則被放置在被稱為closed的容器中。


(6)圖路徑搜索演算法擴展閱讀:

廣度優先搜索演算法的應用

廣度優先搜索演算法能用來解決圖論中的許多問題,例如:

1、查找圖中所有連接組件(ConnectedComponent)。一個連接組件是圖中的最大相連子圖。

2、查找連接組件中的所有節點。

3、查找非加權圖中任兩點的最短路徑。

4、測試一圖是否為二分圖。

5、(Reverse)Cuthill–McKee演算法

『柒』 求有向圖兩點間是否存在路徑的「演算法思想」

從一個點進行深度優先搜索 看能不能到另外一個點

『捌』 圖遍歷演算法之最短路徑Dijkstra演算法

最短路徑問題是圖論研究中一個經典演算法問題,旨在尋找圖中兩節點或單個節點到其他節點之間的最短路徑。根據問題的不同,演算法的具體形式包括:

常用的最短路徑演算法包括:Dijkstra演算法,A 演算法,Bellman-Ford演算法,SPFA演算法(Bellman-Ford演算法的改進版本),Floyd-Warshall演算法,Johnson演算法以及Bi-direction BFS演算法。本文將重點介紹Dijkstra演算法的原理以及實現。

Dijkstra演算法,翻譯作戴克斯特拉演算法或迪傑斯特拉演算法,於1956年由荷蘭計算機科學家艾茲赫爾.戴克斯特拉提出,用於解決賦權有向圖的 單源最短路徑問題 。所謂單源最短路徑問題是指確定起點,尋找該節點到圖中任意節點的最短路徑,演算法可用於尋找兩個城市中的最短路徑或是解決著名的旅行商問題。

問題描述 :在無向圖 中, 為圖節點的集合, 為節點之間連線邊的集合。假設每條邊 的權重為 ,找到由頂點 到其餘各個節點的最短路徑(單源最短路徑)。

為帶權無向圖,圖中頂點 分為兩組,第一組為已求出最短路徑的頂點集合(用 表示)。初始時 只有源點,當求得一條最短路徑時,便將新增頂點添加進 ,直到所有頂點加入 中,演算法結束。第二組為未確定最短路徑頂點集合(用 表示),隨著 中頂點增加, 中頂點逐漸減少。

以下圖為例,對Dijkstra演算法的工作流程進行演示(以頂點 為起點):

註:
01) 是已計算出最短路徑的頂點集合;
02) 是未計算出最短路徑的頂點集合;
03) 表示頂點 到頂點 的最短距離為3
第1步 :選取頂點 添加進


第2步 :選取頂點 添加進 ,更新 中頂點最短距離




第3步 :選取頂點 添加進 ,更新 中頂點最短距離




第4步 :選取頂點 添加進 ,更新 中頂點最短距離





第5步 :選取頂點 添加進 ,更新 中頂點最短距離



第6步 :選取頂點 添加進 ,更新 中頂點最短距離



第7步 :選取頂點 添加進 ,更新 中頂點最短距離

示例:node編號1-7分別代表A,B,C,D,E,F,G

(s.paths <- shortest.paths(g, algorithm = "dijkstra"))輸出結果:

(s.paths <- shortest.paths(g,4, algorithm = "dijkstra"))輸出結果:

示例:

找到D(4)到G(7)的最短路徑:

[1] 維基網路,最短路徑問題: https://zh.wikipedia.org/wiki/%E6%9C%80%E7%9F%AD%E8%B7%AF%E9%97%AE%E9%A2%98 ;
[2]CSDN,Dijkstra演算法原理: https://blog.csdn.net/yalishadaa/article/details/55827681 ;
[3]RDocumentation: https://www.rdocumentation.org/packages/RNeo4j/versions/1.6.4/topics/dijkstra ;
[4]RDocumentation: https://www.rdocumentation.org/packages/igraph/versions/0.1.1/topics/shortest.paths ;
[5]Pypi: https://pypi.org/project/Dijkstar/

閱讀全文

與圖路徑搜索演算法相關的資料

熱點內容
如何開啟app步數授權 瀏覽:22
linuxmaven路徑 瀏覽:135
python爬qq說說 瀏覽:416
linuxmap文件 瀏覽:67
轉轉app如何搜索快手主播 瀏覽:776
移動硬碟文件夾成0位元組 瀏覽:683
夢幻西遊解壓視頻大全 瀏覽:252
解壓小視頻手速 瀏覽:152
我的世界伺服器卡沒血如何修改 瀏覽:161
vba入門到精通pdf 瀏覽:113
tomcat怎麼一個伺服器部署 瀏覽:797
phphttps介面 瀏覽:895
javabyte數組int 瀏覽:810
公司網路共享的文件夾 瀏覽:1000
拍臉搭配衣服是什麼app 瀏覽:916
歐珀手機怎麼更改加密密碼 瀏覽:508
程序員那麼可愛陸漓氣人語錄 瀏覽:904
python中del刪除 瀏覽:461
華為雲耀伺服器和ecs區別 瀏覽:730
ruby語法編譯語言 瀏覽:573