1. 決策樹原理及演算法比較
決策樹是什麼?
和線性回歸一樣是一種模型,內部節點和葉節點。實現分類,內部節點和葉節點通過有向線(分類規 則)連接起來
決策樹的目標是什麼?
決策樹通過對數據復雜度的計算,建立特徵分類標准,確定最佳分類特徵。
表現為「熵」(entropy)和信息增益(information gain),基於決策樹思想的三種演算法:ID3,C4.5,CART演算法,三種演算法的信息衡量的指標也不同.
熵來表示信息的復雜度,熵越大,信息也就越復雜,公式如下:
那些演算法能夠實現決策樹?
在決策樹構建過程中,什麼是比較重要的。特徵選擇(按照熵變計算),演算法產生最重要的部分,
決策樹中葉節點的分類比較純,
節點順序的排列規則:
熵變:
數據的預處理:
改進思路一般有兩個1,換演算法;2,調參數
做好數據的預處理:
1,做好特徵選擇;
2,做好數據離散化、異常值處理、缺失填充
分類器:
在決策樹中,從根到達任意一個葉節點的之間最長路徑的長度,表示對應的演算法排序中最壞情況下的比較次數。這樣一個比較演算法排序中的最壞情況的比較次數就與其決策樹的高度相同,同時如果決策樹中每種排列以可達葉子的形式出現,那麼關於其決策樹高度的下界也就是關於比較排序演算法運行時間的下界,
ID3演算法存在的缺點:
1,ID3演算法在選擇根節點和內部節點分支屬性時,採用信息增益作為評價標准。信息增益的缺點是傾向於選擇取值較多的屬性
2,當數據為連續性變數的時候,ID3演算法就不是一個合理的演算法的模型了
C4.5信息增益比率,
1,在信息增益的基礎上除以split-info,是將信息增益改為信息增益比,以解決取值較多的屬性的問題,另外它還可以處理連續型屬性,其判別標準是θ,
2,C4.5演算法利用增益/熵值,克服了樹生長的過程中,總是『貪婪』選擇變數分類多的進行分類
3,處理來內需型變數,C4.5的分類樹的分支就是兩條
衡量指標:
(1)信息增益
基於ID3演算法的信息增益對於判定連續型變數的時候病不是最優選擇,C4.5演算法用了信息增益率這個概念。
分類信息類的定義如下:
這個值表示將訓練數據集D劃分成對應屬性A測試的V個輸出v個劃分產生的信息,信息增益率定義為:
選擇最大信息增益率的屬性作為分裂屬性
Gini指標,CART
表明樣本的「純凈度」。Gini系數避免了信息增益產生的問題,
過擬合問題,非常好的泛化能力,有很好的推廣能力
Gini系數的計算:
在分類問題中,假設有k個類,樣本點屬於第k類的概率為Pk,則概率分布的gini指數的定義為:
如果樣本集合D根據某個特徵A被分割為D1,D2兩個部分,那麼在特徵A的提哦啊見下,集合D的gini指數的定義為:
Gini指數代表特徵A不同分組下的數據集D的不確定性,gini指數越大,樣本集合的不確定性也就越大,這一點和熵的概念相類似
決策樹原理介紹:
第三步:對於每個屬性執行劃分:
(1)該屬性為離散型變數
記樣本中的變數分為m中
窮舉m種取值分為兩類的劃分
對上述所有劃分計算GINI系數
(2)該屬性為連續型變數
將數據集中從小到大劃分
按順序逐一將兩個相臨值的均值作為分割點
對上述所有劃分計算GINI系數
學歷的劃分使得順序的劃分有個保證,化為連續型變數處理。
決策樹的生成演算法分為兩個步驟:
預剪枝和後剪枝 CCP(cost and complexity)演算法:在樹變小和變大的的情況有個判斷標准。誤差率增益值:α值為誤差的變化
決策樹的終止條件:
1,某一個節點的分支所覆蓋的樣本都是同一類的時候
2,某一個分支覆蓋的樣本的個數如果小於一個閾值,那麼也可以產生葉子節點,從而終止Tree-Growth
確定葉子結點的類:
1,第一種方式,葉子結點覆蓋的樣本都屬於同一類
2, 葉子節點覆蓋的樣本未必是同一類,所佔的大多數,那麼該葉子節點的類別就是那個佔大多數的類
2. 決策樹法分為那幾個步驟
1、特徵選擇
特徵選擇決定了使用哪些特徵來做判斷。在訓練數據集中,每個樣本的屬性可能有很多個,不同屬性的作用有大有小。因而特徵選擇的作用就是篩選出跟分類結果相關性較高的特徵,也就是分類能力較強的特徵。在特徵選擇中通常使用的准則是:信息增益。
2、決策樹生成
選擇好特徵後,就從根節點觸發,對節點計算所有特徵的信息增益,選擇信息增益最大的特徵作為節點特徵,根據該特徵的不同取值建立子節點;對每個子節點使用相同的方式生成新的子節點,直到信息增益很小或者沒有特徵可以選擇為止。
3、決策樹剪枝
剪枝的主要目的是對抗「過擬合」,通過主動去掉部分分支來降低過擬合的風險。
【簡介】
決策樹是一種解決分類問題的演算法,決策樹演算法採用樹形結構,使用層層推理來實現最終的分類。
3. 決策樹的演算法
C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。此外,C4.5隻適合於能夠駐留於內存的數據集,當訓練集大得無法在內存容納時程序無法運行。
具體演算法步驟如下;
1創建節點N
2如果訓練集為空,在返回節點N標記為Failure
3如果訓練集中的所有記錄都屬於同一個類別,則以該類別標記節點N
4如果候選屬性為空,則返回N作為葉節點,標記為訓練集中最普通的類;
5for each 候選屬性 attribute_list
6if 候選屬性是連續的then
7對該屬性進行離散化
8選擇候選屬性attribute_list中具有最高信息增益率的屬性D
9標記節點N為屬性D
10for each 屬性D的一致值d
11由節點N長出一個條件為D=d的分支
12設s是訓練集中D=d的訓練樣本的集合
13if s為空
14加上一個樹葉,標記為訓練集中最普通的類
15else加上一個有C4.5(R - {D},C,s)返回的點 背景:
分類與回歸樹(CART——Classification And Regression Tree)) 是一種非常有趣並且十分有效的非參數分類和回歸方法。它通過構建二叉樹達到預測目的。
分類與回歸樹CART 模型最早由Breiman 等人提出,已經在統計領域和數據挖掘技術中普遍使用。它採用與傳統統計學完全不同的方式構建預測准則,它是以二叉樹的形式給出,易於理解、使用和解釋。由CART 模型構建的預測樹在很多情況下比常用的統計方法構建的代數學預測准則更加准確,且數據越復雜、變數越多,演算法的優越性就越顯著。模型的關鍵是預測准則的構建,准確的。
定義:
分類和回歸首先利用已知的多變數數據構建預測准則, 進而根據其它變數值對一個變數進行預測。在分類中, 人們往往先對某一客體進行各種測量, 然後利用一定的分類准則確定該客體歸屬那一類。例如, 給定某一化石的鑒定特徵, 預測該化石屬那一科、那一屬, 甚至那一種。另外一個例子是, 已知某一地區的地質和物化探信息, 預測該區是否有礦。回歸則與分類不同, 它被用來預測客體的某一數值, 而不是客體的歸類。例如, 給定某一地區的礦產資源特徵, 預測該區的資源量。
4. 決策樹分類演算法有哪些
問題一:決策樹演算法是按什麼來進行分類的 決策樹演算法是一種逼近離散函數值的方法。它是一種典型的分類方法,首先對數據進行處理,利用歸納演算法生成可讀的規則和決策樹,然後使用決策對新數據進行分析。本質上決策樹是通過一系列規則對數據進行分類的過程。
決策樹方法最早產生於上世紀60年代,到70年代末。由J Ross Quinlan提出了ID3演算法,此演算法的目的在於減少樹的深度。但是忽略了葉子數目的研究。C4.5演算法在ID3演算法的基礎上進行了改進,對於預測變數的缺值處理、剪枝技術、派生規則等方面作了較大改進,既適合於分類問題,又適合於回歸問題。
決策樹演算法構造決策樹來發現數據中蘊涵的分類規則.如何構造精度高、規模小的決策樹是決策樹演算法的核心內容。決策樹構造可以分兩步進行。第一步,決策樹的生成:由訓練樣本集生成決策樹的過程。一般情況下,訓練樣本數據集是根據實際需要有歷史的、有一定綜合程度的,用於數據分析處理的數據集。第二步,決策樹的剪枝:決策樹的剪枝是對上一階段生成的決策樹進行檢驗、校正和修下的過程,主要是用新的樣本數據集(稱為測試數據集)中的數據校驗決策樹生成過程中產生的初步規則,將那些影響預衡准確性的分枝剪除。
問題二:數據挖掘分類方法決策樹可以分多類么 數據挖掘,也稱之為資料庫中知識發現是一個可以從海量數據中智能地和自動地抽取一些有用的、可信的、有效的和可以理解的模式的過程.分類是數據挖掘的重要內容之一.目前,分類已廣泛應用於許多領域,如醫療診斷、天氣預測、信用證實、顧客區分、欺詐甄別. 現己有多種分類的方法,其中決策樹分類法在海量數據環境中應用最為廣泛.其原因如下:
1、決策樹分類的直觀的表示方法較容易轉化為標準的資料庫查詢
2、決策樹分類歸納的方法行之有效,尤其適合大型數據集.
3、決策樹在分類過程中,除了數據集中已包括的信息外,不再需要額外的信息.
4、決策樹分類模型的精確度較高. 該文首先研究了評估分類模型的方法.在此基礎上著重研究了決策樹分類方法,並對決策樹演算法的可伸縮性問題進行了具體分析,最後給出了基於OLE DB for DM開發決策樹分類預測應用程序.
問題三:基於規則的分類器(比如用RIPPER演算法)和決策樹的區別在哪,使用場景有什麼不同? 決策樹實際上是規則分類器。基於轉換的錯誤驅動學習方法的提出者曾經在論文中論證過這個問題,他的學習方法是規則學習器,但和決策樹等價。
問題四:決策樹的優缺點是什麼啊 決策樹(Decision Tree)是在已知各種情況發生概率的基礎上,通過構成決策樹來求取凈現值的期望值大於等於零的概率,評價項目風險,判斷其可行性的決策分析方法,是直觀運用概率分析的一種圖解法。
決策樹的優缺點:
優點:
1) 可以生成可以理解的規則。
2) 計算量相對來說不是很大。
3) 可以處理連續和種類字穿。
4) 決策樹可以清晰的顯示哪些欄位比較重要
缺點:
1) 對連續性的欄位比較難預測。
2) 對有時間順序的數據,需要很多預處理的工作。
3) 當類別太多時,錯誤可能就會增加的比較快。
4) 一般的演算法分類的時候,只是根據一個欄位來分類。
問題五:c4.5決策樹演算法怎麼得到分類結果 決策樹主要有ID3,C4.5,CART等形式。ID3選取信息增益的屬性遞歸進行分類,C4.5改進為使用信息增益率來選取分類屬性。CART是Classfication and Regression Tree的縮寫。表明CART不僅可以進行分類,也可以進行回歸。
問題六:決策樹分類演算法的適用領域,不要概括成經濟、社會、醫療領域,具體到實際問題。且用什麼軟體實現較方便。 決策樹演算法主要用於數據挖掘和機器學習,數據挖掘就是從海量數據中找出規律。一個有名的例子就是啤酒和尿布的例子,這是數據挖掘的典型。決策樹演算法包括ID3,C4.5,CART等,各種演算法都是利用海量的數據來生成決策樹的,決策樹能幫助人或者機器做出決策。最簡單的一個例子就是你去看病,根據決策樹,醫生能夠判斷這是什麼病。軟體的話用VISUAL STUDIO就可以,C語言,C++,C#,java都可以。
問題七:貝葉斯網路和貝葉斯分類演算法的區別 貝葉斯分類演算法是統計學的一種分類方法,它是一類利用概率統計知識進行分類的演算法。在許多場合,樸素貝葉斯(Na?ve Bayes,NB)分類演算法可以與決策樹和神經網路分類演算法相媲美,該演算法能運用到大型資料庫中,而且方法簡單、分類准確率高、速度快。
由於貝葉斯定理假設一個屬性值對給定類的影響獨立於其它屬性的值,而此假設在實際情況中經常是不成立的,因此其分類准確率可能會下降。為此,就衍生出許多降低獨立性假設的貝葉斯分類演算法,如TAN(tree augmented Bayes network)演算法。
5. 數據挖掘-決策樹演算法
決策樹演算法是一種比較簡易的監督學習分類演算法,既然叫做決策樹,那麼首先他是一個樹形結構,簡單寫一下樹形結構(數據結構的時候學過不少了)。
樹狀結構是一個或多個節點的有限集合,在決策樹里,構成比較簡單,有如下幾種元素:
在決策樹中,每個葉子節點都有一個類標簽,非葉子節點包含對屬性的測試條件,用此進行分類。
所以個人理解,決策樹就是 對一些樣本,用樹形結構對樣本的特徵進行分支,分到葉子節點就能得到樣本最終的分類,而其中的非葉子節點和分支就是分類的條件,測試和預測分類就可以照著這些條件來走相應的路徑進行分類。
根據這個邏輯,很明顯決策樹的關鍵就是如何找出決策條件和什麼時候算作葉子節點即決策樹終止。
決策樹的核心是為不同類型的特徵提供表示決策條件和對應輸出的方法,特徵類型和劃分方法包括以下幾個:
注意,這些圖中的第二層都是分支,不是葉子節點。
如何合理的對特徵進行劃分,從而找到最優的決策模型呢?在這里需要引入信息熵的概念。
先來看熵的概念:
在數據集中,參考熵的定義,把信息熵描述為樣本中的不純度,熵越高,不純度越高,數據越混亂(越難區分分類)。
例如:要給(0,1)分類,熵是0,因為能明顯分類,而均衡分布的(0.5,0.5)熵比較高,因為難以劃分。
信息熵的計算公式為:
其中 代表信息熵。 是類的個數, 代表在 類時 發生的概率。
另外有一種Gini系數,也可以用來衡量樣本的不純度:
其中 代表Gini系數,一般用於決策樹的 CART演算法 。
舉個例子:
如果有上述樣本,那麼樣本中可以知道,能被分為0類的有3個,分為1類的也有3個,那麼信息熵為:
Gini系數為:
總共有6個數據,那麼其中0類3個,佔比就是3/6,同理1類。
我們再來計算一個分布比較一下:
信息熵為:
Gini系數為:
很明顯,因為第二個分布中,很明顯這些數偏向了其中一類,所以 純度更高 ,相對的信息熵和Gini系數較低。
有了上述的概念,很明顯如果我們有一組數據要進行分類,最快的建立決策樹的途徑就是讓其在每一層都讓這個樣本純度最大化,那麼就要引入信息增益的概念。
所謂增益,就是做了一次決策之後,樣本的純度提升了多少(不純度降低了多少),也就是比較決策之前的樣本不純度和決策之後的樣本不純度,差越大,效果越好。
讓信息熵降低,每一層降低的越快越好。
度量這個信息熵差的方法如下:
其中 代表的就是信息熵(或者其他可以度量不純度的系數)的差, 是樣本(parent是決策之前, 是決策之後)的信息熵(或者其他可以度量不純度的系數), 為特徵值的個數, 是原樣本的記錄總數, 是與決策後的樣本相關聯的記錄個數。
當選擇信息熵作為樣本的不純度度量時,Δ就叫做信息增益 。
我們可以遍歷每一個特徵,看就哪個特徵決策時,產生的信息增益最大,就把他作為當前決策節點,之後在下一層繼續這個過程。
舉個例子:
如果我們的目標是判斷什麼情況下,銷量會比較高(受天氣,周末,促銷三個因素影響),根據上述的信息增益求法,我們首先應該找到根據哪個特徵來決策,以信息熵為例:
首先肯定是要求 ,也就是銷量這個特徵的信息熵:
接下來,就分別看三個特徵關於銷量的信息熵,先看天氣,天氣分為好和壞兩種,其中天氣為好的條件下,銷量為高的有11條,低的有6條;天氣壞時,銷量為高的有7條,銷量為低的有10條,並且天氣好的總共17條,天氣壞的總共17條。
分別計算天氣好和天氣壞時的信息熵,天氣好時:
根據公式 ,可以知道,N是34,而天氣特徵有2個值,則k=2,第一個值有17條可以關聯到決策後的節點,第二個值也是17條,則能得出計算:
再計算周末這個特徵,也只有兩個特徵值,一個是,一個否,其中是有14條,否有20條;周末為是的中有11條銷量是高,3條銷量低,以此類推有:
信息增益為:
另外可以得到是否有促銷的信息增益為0.127268。
可以看出,以周末為決策,可以得到最大的信息增益,因此根節點就可以用周末這個特徵進行分支:
注意再接下來一層的原樣本集,不是34個而是周末為「是」和「否」分別計算,為是的是14個,否的是20個。
這樣一層一層往下遞歸,直到判斷節點中的樣本是否都屬於一類,或者都有同一個特徵值,此時就不繼續往下分了,也就生成了葉子節點。
上述模型的決策樹分配如下:
需要注意的是,特徵是否出現需要在分支當中看,並不是整體互斥的,周末生成的兩個分支,一個需要用促銷來決策,一個需要用天氣,並不代表再接下來就沒有特徵可以分了,而是在促銷決策層下面可以再分天氣,另外一遍天氣決策下面可以再分促銷。
決策樹的模型比較容易解釋,看這個樹形圖就能很容易的說出分類的條件。
我們知道屬性有二元屬性、標稱屬性、序數屬性和連續屬性,其中二元、標稱和序數都是類似的,因為是離散的屬性,按照上述方式進行信息增益計算即可,而連續屬性與這三個不同。
對於連續的屬性,為了降低其時間復雜度,我們可以先將屬性內部排序,之後取相鄰節點的均值作為決策值,依次取每兩個相鄰的屬性值的均值,之後比較他們的不純度度量。
需要注意的是,連續屬性可能在決策樹中出現多次,而不是像離散的屬性一樣在一個分支中出現一次就不會再出現了。
用信息熵或者Gini系數等不純度度量有一個缺點,就是會傾向於將多分支的屬性優先分類——而往往這種屬性並不是特徵。
例如上面例子中的第一行序號,有34個不同的值,那麼信息熵一定很高,但是實際上它並沒有任何意義,因此我們需要規避這種情況,如何規避呢,有兩種方式:
公式如下:
其中k為劃分的總數,如果每個屬性值具有相同的記錄數,則 ,劃分信息等於 ,那麼如果某個屬性產生了大量劃分,則劃分信息很大,信息增益率低,就能規避這種情況了。
為了防止過擬合現象,往往會對決策樹做優化,一般是通過剪枝的方式,剪枝又分為預剪枝和後剪枝。
在構建決策樹時,設定各種各樣的條件如葉子節點的樣本數不大於多少就停止分支,樹的最大深度等,讓決策樹的層級變少以防止過擬合。
也就是在生成決策樹之前,設定了決策樹的條件。
後剪枝就是在最大決策樹生成之後,進行剪枝,按照自底向上的方式進行修剪,修剪的規則是,評估葉子節點和其父節點的代價函數,如果父節點的代價函數比較小,則去掉這個葉子節點。
這里引入的代價函數公式是:
其中 代表的是葉子節點中樣本個數, 代表的是該葉子節點上的不純度度量,把每個葉子節點的 加起來,和父節點的 比較,之後進行剪枝即可。
6. 決策樹計算公式
決策樹計算公式公式:H(X)=–∑P(x)log[P(x)]H(x):表示熵 P(x):表示x事件發生的概率。
決策樹法的具體計算過程:
①繪制決策樹圖形,按上述要求由左向右順序展開。
②計算每個結點的期望值,計算公式為:
狀態結點的期望值=Σ(損益值×概率值)×經營年限
③剪枝,即進行方案的選優。
方案凈效果=該方案狀態結點的期望值-該方案投資額