導航:首頁 > 源碼編譯 > 排序演算法基本有序

排序演算法基本有序

發布時間:2023-10-17 18:58:16

㈠ 排序有幾種方法

一. 冒泡排序

冒泡排序是是一種簡單的排序演算法。它重復地遍歷要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把它們交換過來。遍歷數列的工作是重復的進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢「浮」到數列的頂端

1.冒泡排序演算法的運作如下:
(1)比較相鄰的元素。如果第一個比第二個大(升序),就交換他們兩個
(2)對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。這步做完後,最後的元素還是最大的數
(3)針對所有的元素重復以上的步驟,除了最後一個
二. 選擇排序
選擇排序是一種簡單直觀的排序演算法。他的工作原理如下:
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置(末尾位置),然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢
選擇排序的主要優點與數據移動有關。如果某個元素位於正確的最終位置上,則它不會被移動。選擇排序每次交換一對元素,他們當中至少有一個將被移到最終位置上,因此對n個元素的表進行排序總共進行至多n-1次交換。在所有的完全依靠交換去移動 元素的排序方法中,選擇排序屬於非常好的一種
三. 插入排序

插入排序是一種簡單直觀的排序演算法。它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在從後向前掃描的過程中,需要反復把已排序元素逐步向後挪位,為最新元素提供插入空間
四. 快速排序
快速排序,又稱劃分交換排序。通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都要小,然後再按此方法對兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列
五 希爾排序過程

希爾排序是插入排序的一種,也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法便終止。
六. 歸並排序

歸並排序是採用分治法(把復雜問題分解為相對簡單的子問題,分別求解,最後通過組合起子問題的解的方式得到原問題的解)的一個非常典型的應用。歸並排序的思想就是先遞歸分解數組,再合並數組

將數組分解最小之後,然後合並兩個有序數組,基本思路是比較兩個數組的最前面的數,水小九先取誰,取了後相應的指針就往後移一位。然後比較,直至一個數組為空,最後把另一個數組的剩餘部分復制過來即可

㈡ 排序演算法有多少種

排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。一般來說有升序排列和降序排列2種排序,在演算法中有8中基本排序:
(1)冒泡排序;
(2)選擇排序;
(3)插入排序;
(4)希爾排序;
(5)歸並排序;
(6)快速排序;
(7)基數排序;
(8)堆排序;
(9)計數排序;
(10)桶排序。
插入排序
插入排序演算法是基於某序列已經有序排列的情況下,通過一次插入一個元素的方式按照原有排序方式增加元素。這種比較是從該有序序列的最末端開始執行,即要插入序列中的元素最先和有序序列中最大的元素比較,若其大於該最大元素,則可直接插入最大元素的後面即可,否則再向前一位比較查找直至找到應該插入的位置為止。插入排序的基本思想是,每次將1個待排序的記錄按其關鍵字大小插入到前面已經排好序的子序列中,尋找最適當的位置,直至全部記錄插入完畢。執行過程中,若遇到和插入元素相等的位置,則將要插人的元素放在該相等元素的後面,因此插入該元素後並未改變原序列的前後順序。我們認為插入排序也是一種穩定的排序方法。插入排序分直接插入排序、折半插入排序和希爾排序3類。
冒泡排序
冒泡排序演算法是把較小的元素往前調或者把較大的元素往後調。這種方法主要是通過對相鄰兩個元素進行大小的比較,根據比較結果和演算法規則對該二元素的位置進行交換,這樣逐個依次進行比較和交換,就能達到排序目的。冒泡排序的基本思想是,首先將第1個和第2個記錄的關鍵字比較大小,如果是逆序的,就將這兩個記錄進行交換,再對第2個和第3個記錄的關鍵字進行比較,依次類推,重復進行上述計算,直至完成第(n一1)個和第n個記錄的關鍵字之間的比較,此後,再按照上述過程進行第2次、第3次排序,直至整個序列有序為止。排序過程中要特別注意的是,當相鄰兩個元素大小一致時,這一步操作就不需要交換位置,因此也說明冒泡排序是一種嚴格的穩定排序演算法,它不改變序列中相同元素之間的相對位置關系。
選擇排序
選擇排序演算法的基本思路是為每一個位置選擇當前最小的元素。選擇排序的基本思想是,基於直接選擇排序和堆排序這兩種基本的簡單排序方法。首先從第1個位置開始對全部元素進行選擇,選出全部元素中最小的給該位置,再對第2個位置進行選擇,在剩餘元素中選擇最小的給該位置即可;以此類推,重復進行「最小元素」的選擇,直至完成第(n-1)個位置的元素選擇,則第n個位置就只剩唯一的最大元素,此時不需再進行選擇。使用這種排序時,要注意其中一個不同於冒泡法的細節。舉例說明:序列58539.我們知道第一遍選擇第1個元素「5」會和元素「3」交換,那麼原序列中的兩個相同元素「5」之間的前後相對順序就發生了改變。因此,我們說選擇排序不是穩定的排序演算法,它在計算過程中會破壞穩定性。
快速排序
快速排序的基本思想是:通過一趟排序演算法把所需要排序的序列的元素分割成兩大塊,其中,一部分的元素都要小於或等於另外一部分的序列元素,然後仍根據該種方法對劃分後的這兩塊序列的元素分別再次實行快速排序演算法,排序實現的整個過程可以是遞歸的來進行調用,最終能夠實現將所需排序的無序序列元素變為一個有序的序列。
歸並排序
歸並排序演算法就是把序列遞歸劃分成為一個個短序列,以其中只有1個元素的直接序列或者只有2個元素的序列作為短序列的遞歸出口,再將全部有序的短序列按照一定的規則進行排序為長序列。歸並排序融合了分治策略,即將含有n個記錄的初始序列中的每個記錄均視為長度為1的子序列,再將這n個子序列兩兩合並得到n/2個長度為2(當凡為奇數時會出現長度為l的情況)的有序子序列;將上述步驟重復操作,直至得到1個長度為n的有序長序列。需要注意的是,在進行元素比較和交換時,若兩個元素大小相等則不必刻意交換位置,因此該演算法不會破壞序列的穩定性,即歸並排序也是穩定的排序演算法。

㈢ 排序演算法概述

十大排序演算法:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序、希爾排序、計數排序,基數排序,桶排序

穩定 :如果a原本在b前面,而a=b,排序之後a仍然在b的前面;
不穩定 :如果a原本在b的前面,而a=b,排序之後a可能會出現在b的後面;
排序演算法如果是穩定的,那麼從一個鍵上排序,然後再從另一個鍵上排序,前一個鍵排序的結果可以為後一個鍵排序所用。

演算法的復雜度往往取決於數據的規模大小和數據本身分布性質。
時間復雜度 : 一個演算法執行所耗費的時間。
空間復雜度 :對一個演算法在運行過程中臨時佔用存儲空間大小的量度。
常見復雜度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)

在各種不同演算法中,若演算法中語句執行次數(佔用空間)為一個常數,則復雜度為O(1);
當一個演算法的復雜度與以2為底的n的對數成正比時,可表示為O(log n);
當一個演算法的復雜度與n成線性比例關系時,可表示為O (n),依次類推。

冒泡、選擇、插入排序需要兩個for循環,每次只關注一個元素,平均時間復雜度為
(一遍找元素O(n),一遍找位置O(n))
快速、歸並、堆基於分治思想,log以2為底,平均時間復雜度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相關
而希爾排序依賴於所取增量序列的性質,但是到目前為止還沒有一個最好的增量序列 。例如希爾增量序列時間復雜度為O(n²),而Hibbard增量序列的希爾排序的時間復雜度為 , 有人在大量的實驗後得出結論;當n在某個特定的范圍後希爾排序的最小時間復雜度大約為n^1.3。

從平均時間來看,快速排序是效率最高的:
快速排序中平均時間復雜度O(nlog n),這個公式中隱含的常數因子很小,比歸並排序的O(nlog n)中的要小很多,所以大多數情況下,快速排序總是優於合並排序的。

而堆排序的平均時間復雜度也是O(nlog n),但是堆排序存在著重建堆的過程,它把根節點移除後,把最後的葉子結點拿上來後需要重建堆,但是,拿上的值是要比它的兩個葉子結點要差很多的,一般要比較很多次,才能回到合適的位置。堆排序就會有很多的時間耗在堆調整上。

雖然快速排序的最壞情況為排序規模(n)的平方關系,但是這種最壞情況取決於每次選擇的基準, 對於這種情況,已經提出了很多優化的方法,比如三取樣劃分和Dual-Pivot快排。
同時,當排序規模較小時,劃分的平衡性容易被打破,而且頻繁的方法調用超過了O(nlog n)為
省出的時間,所以一般排序規模較小時,會改用插入排序或者其他排序演算法。

一種簡單的排序演算法。它反復地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。這個工作重復地進行直到沒有元素再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為元素會經由交換慢慢「浮」到數列的頂端。
1.從數組頭開始,比較相鄰的元素。如果第一個比第二個大(小),就交換它們兩個;
2.對每一對相鄰元素作同樣的工作,從開始第一對到尾部的最後一對,這樣在最後的元素應該會是最大(小)的數;
3.重復步驟1~2,重復次數等於數組的長度,直到排序完成。

首先,找到數組中最大(小)的那個元素;
其次,將它和數組的第一個元素交換位置(如果第一個元素就是最大(小)元素那麼它就和自己交換);
再次,在剩下的元素中找到最大(小)的元素,將它與數組的第二個元素交換位置。如此往復,直到將整個數組排序。
這種方法叫做選擇排序,因為它在不斷地選擇剩餘元素之中的最大(小)者。

對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。
為了給要插入的元素騰出空間,我們需要將插入位置之後的已排序元素在都向後移動一位。
插入排序所需的時間取決於輸入中元素的初始順序。例如,對一個很大且其中的元素已經有序(或接近有序)的數組進行排序將會比對隨機順序的數組或是逆序數組進行排序要快得多。
總的來說,插入排序對於部分有序的數組十分高效,也很適合小規模數組。

一種基於插入排序的快速的排序演算法。簡單插入排序對於大規模亂序數組很慢,因為元素只能一點一點地從數組的一端移動到另一端。例如,如果主鍵最小的元素正好在數組的盡頭,要將它挪到正確的位置就需要N-1 次移動。
希爾排序為了加快速度簡單地改進了插入排序,也稱為縮小增量排序,同時該演算法是突破O(n^2)的第一批演算法之一。
希爾排序是把待排序數組按一定數量的分組,對每組使用直接插入排序演算法排序;然後縮小數量繼續分組排序,隨著數量逐漸減少,每組包含的元素越來越多,當數量減至 1 時,整個數組恰被分成一組,排序便完成了。這個不斷縮小的數量,就構成了一個增量序列。

在先前較大的增量下每個子序列的規模都不大,用直接插入排序效率都較高,盡管在隨後的增量遞減分組中子序列越來越大,由於整個序列的有序性也越來越明顯,則排序效率依然較高。
從理論上說,只要一個數組是遞減的,並且最後一個值是1,都可以作為增量序列使用。有沒有一個步長序列,使得排序過程中所需的比較和移動次數相對較少,並且無論待排序列記錄數有多少,演算法的時間復雜度都能漸近最佳呢?但是目前從數學上來說,無法證明某個序列是「最好的」。
常用的增量序列
希爾增量序列 :{N/2, (N / 2)/2, ..., 1},其中N為原始數組的長度,這是最常用的序列,但卻不是最好的
Hibbard序列:{2^k-1, ..., 3,1}
Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表達式為

歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法的一個非常典型的應用。
對於給定的一組數據,利用遞歸與分治技術將數據序列劃分成為越來越小的半子表,在對半子表排序後,再用遞歸方法將排好序的半子表合並成為越來越大的有序序列。
為了提升性能,有時我們在半子表的個數小於某個數(比如15)的情況下,對半子表的排序採用其他排序演算法,比如插入排序。
若將兩個有序表合並成一個有序表,稱為2-路歸並,與之對應的還有多路歸並。

快速排序(Quicksort)是對冒泡排序的一種改進,也是採用分治法的一個典型的應用。
首先任意選取一個數據(比如數組的第一個數)作為關鍵數據,我們稱為基準數(Pivot),然後將所有比它小的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一趟快速排序,也稱為分區(partition)操作。
通過一趟快速排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數組變成有序序列。
為了提升性能,有時我們在分割後獨立的兩部分的個數小於某個數(比如15)的情況下,會採用其他排序演算法,比如插入排序。

基準的選取:最優的情況是基準值剛好取在無序區數值的中位數,這樣能夠最大效率地讓兩邊排序,同時最大地減少遞歸劃分的次數,但是一般很難做到最優。基準的選取一般有三種方式,選取數組的第一個元素,選取數組的最後一個元素,以及選取第一個、最後一個以及中間的元素的中位數(如4 5 6 7, 第一個4, 最後一個7, 中間的為5, 這三個數的中位數為5, 所以選擇5作為基準)。
Dual-Pivot快排:雙基準快速排序演算法,其實就是用兩個基準數, 把整個數組分成三份來進行快速排序,在這種新的演算法下面,比經典快排從實驗來看節省了10%的時間。

許多應用程序都需要處理有序的元素,但不一定要求他們全部有序,或者不一定要一次就將他們排序,很多時候,我們每次只需要操作數據中的最大元素(最小元素),那麼有一種基於二叉堆的數據結構可以提供支持。
所謂二叉堆,是一個完全二叉樹的結構,同時滿足堆的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。在一個二叉堆中,根節點總是最大(或者最小)節點。
堆排序演算法就是抓住了這一特點,每次都取堆頂的元素,然後將剩餘的元素重新調整為最大(最小)堆,依次類推,最終得到排序的序列。

推論1:對於位置為K的結點 左子結點=2 k+1 右子結點=2 (k+1)
驗證:C:2 2 2+1=5 2 (2+1)=6
推論2:最後一個非葉節點的位置為 (N/2)-1,N為數組長度。
驗證:數組長度為6,(6/2)-1=2

計數排序對一定范圍內的整數排序時候的速度非常快,一般快於其他排序演算法。但計數排序局限性比較大,只限於對整數進行排序,而且待排序元素值分布較連續、跨度小的情況。
計數排序是一個排序時不比較元素大小的排序演算法。
如果一個數組里所有元素都是整數,而且都在0-K以內。對於數組里每個元素來說,如果能知道數組里有多少項小於或等於該元素,就能准確地給出該元素在排序後的數組的位置。

桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分布,利用某種函數的映射關系將數據分到有限數量的桶里,每個桶再分別排序(有可能再使用別的排序演算法或是以遞歸方式繼續使用桶排序)。
桶排序利用函數的映射關系,減少了幾乎所有的比較工作。實際上,桶排序的f(k)值的計算,其作用就相當於快排中劃分,已經把大量數據分割成了基本有序的數據塊(桶)。然後只需要對桶中的少量數據做排序即可。

常見的數據元素一般是由若干位組成的,比如字元串由若干字元組成,整數由若干位0~9數字組成。基數排序按照從右往左的順序,依次將每一位都當做一次關鍵字,然後按照該關鍵字對數組排序,同時每一輪排序都基於上輪排序後的結果;當我們將所有的位排序後,整個數組就達到有序狀態。基數排序不是基於比較的演算法。
基數是什麼意思?對於十進制整數,每一位都只可能是0~9中的某一個,總共10種可能。那10就是它的基,同理二進制數字的基為2;對於字元串,如果它使用的是8位的擴展ASCII字元集,那麼它的基就是256。

基數排序 vs 計數排序 vs 桶排序

基數排序有兩種方法:
MSD 從高位開始進行排序
LSD 從低位開始進行排序
這三種排序演算法都利用了桶的概念,但對桶的使用方法上有明顯差異:
基數排序:根據鍵值的每位數字來分配桶
計數排序:每個桶只存儲單一鍵值
桶排序:每個桶存儲一定范圍的數值

有時,待排序的文件很大,計算機內存不能容納整個文件,這時候對文件就不能使用內部排序了(我們一般的排序都是在內存中做的,所以稱之為內部排序,而外部排序是指待排序的內容不能在內存中一下子完成,它需要做內外存的內容交換),外部排序常採用的排序方法也是歸並排序,這種歸並方法由兩個不同的階段組成:
採用適當的內部排序方法對輸入文件的每個片段進行排序,將排好序的片段(成為歸並段)寫到外部存儲器中(通常由一個可用的磁碟作為臨時緩沖區),這樣臨時緩沖區中的每個歸並段的內容是有序的。
利用歸並演算法,歸並第一階段生成的歸並段,直到只剩下一個歸並段為止。

例如要對外存中4500個記錄進行歸並,而內存大小隻能容納750個記錄,在第一階段,我們可以每次讀取750個記錄進行排序,這樣可以分六次讀取,進行排序,可以得到六個有序的歸並段
每個歸並段的大小是750個記錄,並將這些歸並段全部寫到臨時緩沖區(由一個可用的磁碟充當)內了,這是第一步的排序結果。
完成第二步該怎麼做呢?這時候歸並演算法就有用處了。

㈣ 常見排序演算法歸納

排序演算法一般分類:

比較兩個相鄰的元素,將值大的元素交換至右端。

依次比較兩個相鄰的數,將小數放到前面,大數放到後面

即在第一趟:首先比較第1個數和第2個數,將小數放前,大數放後。然後比較第2個數和第3個數,將小數放前,大數放後,如此一直繼續下去,直到比較最後兩個數,將小數放前,大數放後。然後重復第一趟步驟,直到所有排序完成。

第一趟比較完成後,最後一個數一定是數組中最大的一個數,所以第二趟比較的時候最後一個數不參與比較。

第二趟完成後,倒數第二個數也一定是數組中第二大的數,所以第三趟比較的時候最後兩個數不參與比較。

依次類推......

輸出結果:

冒泡排序的優點: 每進行一趟排序,就會少比較一次,因為每進行一趟排序都會找出一個較大值。如上例:第一趟比較之後,排在最後的一個數一定是最大的一個數,第二趟排序的時候,只需要比較除了最後一個數以外的其他的數,同樣也能找出一個最大的數排在參與第二趟比較的數後面,第三趟比較的時候,只需要比較除了最後兩個數以外的其他的數,以此類推……也就是說,沒進行一趟比較,每一趟少比較一次,一定程度上減少了演算法的量。

用時間復雜度來說:

從一個數組中隨機選出一個數N,通過一趟排序將數組分割成三個部分,1、小於N的區域 2、等於N的區域 3、大於N的區域,然後再按照此方法對小於區的和大於區分別遞歸進行,從而達到整個數據變成有序數組。

如下圖:

假設最開始的基準數據為數組的第一個元素23,則首先用一個臨時變數去存儲基準數據,即 tmp=23 ,然後分別從數組的兩端掃描數組,設兩個指示標志: low 指向起始位置, high 指向末尾。

首先從後半部分開始,如果 掃描到的值大於基準數據 就讓 high-1 ,如果發現有元素比該基準數據的值小,比如上面的 18 <= tmp ,就讓 high位置的值賦值給low位置 ,結果如下:

然後開始從前往後掃描,如果掃描到的值小於基準數據就讓 low+1 ,如果發現有元素大於基準數據的值,比如上圖 46 >= tmp ,就再將 low 位置的值賦值給 high 位置的值,指針移動並且數據交換後的結果如下:

然後再開始從前往後遍歷,直到 low=high 結束循環,此時low或者high的下標就是 基準數據23在該數組中的正確索引位置 ,如下圖所示:

這樣一遍遍的走下來,可以很清楚的知道,快排的本質就是把比基準數據小的都放到基準數的左邊,比基準數大的數都放到基準數的右邊,這樣就找到了該數據在數組中的正確位置。

然後採用遞歸的方式分別對前半部分和後半部分排序,最終結果就是自然有序的了。

輸出結果:

最好情況下快排每次能恰好均分序列,那麼時間復雜度就是O(nlogn),最壞情況下,快排每次劃分都只能將序列分為一個元素和其它元素兩部分,這時候的快排退化成冒泡排序,時間復雜度為O(n^2)。

插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。

將一個數據插入到 已經排好序的有序數據

第一趟排序:

用數組的第二個數與第一個數( 看成是已有序的數據 )比較

第二趟排序:

用數組的第三個數與已是有序的數據 {2,3} (剛才在第一趟排的)比較

在第二步中:

...

後面依此類推

輸出結果:

選擇排序是一種簡單直觀的排序演算法。它的工作原理是每一次從待排序的數據元素中選出最小(或最大)的一個元素,存放在序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到全部待排序的數據元素排完。 選擇排序是不穩定的排序方法。

舉例:數組 int[] arr={5,2,8,4,9,1}

第一趟排序 : 原始數據: 5 2 8 4 9 1

最小數據1,把1放在首位,也就是1和5互換位置,

排序結果: 1 2 8 4 9 5

第二趟排序

第1以外的數據 {2 8 4 9 5} 進行比較,2最小,

排序結果: 1 2 8 4 9 5

第三趟排序

除 1、2 以外的數據 {8 4 9 5} 進行比較,4最小,8和4交換

排序結果: 1 2 4 8 9 5

第四趟排序 :

除第 1、2、4 以外的其他數據 {8 9 5} 進行比較,5最小,8和5交換

排序結果: 1 2 4 5 9 8

第五趟排序:

除第 1、2、4、5 以外的其他數據 {9 8} 進行比較,8最小,8和9交換

排序結果: 1 2 4 5 8 9

輸出結果:

歸並排序(merge sort)是利用歸並的思想實現的排序方法,該演算法採用經典的分治(divide-and-conquer)策略(分治法將問題分(divide)成一些小的問題然後遞歸求解,而治(conquer)的階段則將分的階段得到的各答案"修補"在一起,即分而治之)。

比如我們對 [8,4,5,7,1,3,6,2] 這個數組進行歸並排序,我們首先利用分治思想的「分」將數組拆分。

輸出結果:

㈤ 基本排序演算法原理

演算法原理:每次對相鄰的兩個元素進行比較,若前者大於後者則進行交換,如此一趟下來最後一趟的就是最大元素,重復以上的步驟,除了已經確定的元素 。

演算法原理:每次對相鄰的兩個元素進行比較,若前者大於後者則進行交換,如此一趟下來最後一趟的就是最大元素,重復以上的步驟,除了已經確定的元素

演算法步驟

1)  設置兩個變數i、j,排序開始的時候:i=0,j=n-1;

2)第一個數組值作為比較值,首先保存到temp中,即temp=A[0];

3)然後j-- ,向前搜索,找到小於temp後,因為s[i]的值保存在temp中,所以直接賦值,s[i]=s[j]

4)然後i++,向後搜索,找到大於temp後,因為s[j]的值保存在第2步的s[i]中,所以直接賦值,s[j]=s[i],然後j--,避免死循環

5)重復第3、4步,直到i=j,最後將temp值返回s[i]中

6)  然後採用「二分」的思想,以i為分界線,拆分成兩個數組 s[0,i-1]、s[i+1,n-1]又開始排序

排序圖解

演算法原理:從第一個元素開始,左邊視為已排序數組,右邊視為待排序數組,從左往右依次取元素,插入左側已排序數組,對插入新元素的左側數組重新生成有序數組 。需要注意的是,在往有序數組插入一個新元素的過程中,我們可以採用按 順序循環 比較,也可以通過 折半查找法 來找到新元素的位置,兩種方式的效率 取決於數組的數據量

演算法原理:希爾排序也是利用插入排序的思想來排序。希爾排序通過將比較的全部元素分為幾個區域來提升插入排序的性能。這樣可以讓一個元素可以一次性地朝最終位置前進一大步。然後演算法再取越來越小的步長進行排序,演算法的最後一步就是普通的插入排序,但是到了這步,需排序的數據幾乎是已排好的了,插入效率比較高。

排序圖解

選擇排序(Selection sort)是一種簡單直觀的排序演算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。選擇排序的主要優點與數據移動有關。如果某個元素位於正確的最終位置上,則它不會被移動。選擇排序每次交換一對元素,它們當中至少有一個將被移到其最終位置上,因此對n個元素的表進行排序總共進行至多n-1次交換。在所有的完全依靠交換去移動元素的排序方法中,選擇排序屬於非常好的一種。

歸並排序,顧名思義就是一種 「遞歸合並」 的排序方法(這個理解很重要)。對於一個數列,我們把它進行二分處理,依次遞歸下去,然後將小范圍的數進行排序,最後將其合並在一起。就實現了歸並排序。

這實際上是運用了 分治思想 ,顯然,想要把一個數列排好序,最終達到的目的就是它的任何一部分都是有序的。這樣的話,我們可以考慮分別把數列分成N多個部分,讓每個部分分別有序,然後再將其統一,變成所有的東西都有序。這樣就實現了排序。這個想法就叫分治思想。

排序圖解

排序圖解

閱讀全文

與排序演算法基本有序相關的資料

熱點內容
phphttps介面 瀏覽:893
javabyte數組int 瀏覽:806
公司網路共享的文件夾 瀏覽:998
拍臉搭配衣服是什麼app 瀏覽:916
歐珀手機怎麼更改加密密碼 瀏覽:508
程序員那麼可愛陸漓氣人語錄 瀏覽:904
python中del刪除 瀏覽:457
華為雲耀伺服器和ecs區別 瀏覽:730
ruby語法編譯語言 瀏覽:569
U盤加密以後文件破損 瀏覽:287
改變路由器加密類型 瀏覽:306
java換行空格 瀏覽:834
程序員的等級有哪些 瀏覽:728
小學編程教師試講15分試講視頻 瀏覽:226
wincc編譯在哪 瀏覽:476
華為演算法比賽 瀏覽:553
linux防火牆開發 瀏覽:861
plc編程顯示該口不存在 瀏覽:148
命令與征服序列號 瀏覽:596
pdf格式轉化jpg格式的文件 瀏覽:300