導航:首頁 > 源碼編譯 > k近鄰演算法與局部回歸

k近鄰演算法與局部回歸

發布時間:2023-10-23 00:55:02

A. 實驗二 K-近鄰演算法及應用

(1)簡單,易於理解,易於實現,無需估計參數。

(2)訓練時間為零。它沒有顯示的訓練,不像其它有監督的演算法會用訓練集train一個模型(也就是擬合一個函數),然後驗證集或測試集用該模型分類。KNN只是把樣本保存起來,收到測試數據時再處理,所以KNN訓練時間為零。

(3)KNN可以處理分類問題,同時天然可以處理多分類問題,適合對稀有事件進行分類。

(4)特別適合於多分類問題(multi-modal,對象具有多個類別標簽), KNN比SVM的表現要好。

(5)KNN還可以處理回歸問題,也就是預測。

(6)和樸素貝葉斯之類的演算法比,對數據沒有假設,准確度高,對異常點不敏感。

(1)計算量太大,尤其是特徵數非常多的時候。每一個待分類文本都要計算它到全體已知樣本的距離,才能得到它的第K個最近鄰點。

(2)可理解性差,無法給出像決策樹那樣的規則。

(3)是慵懶散學習方法,基本上不學習,導致預測時速度比起邏輯回歸之類的演算法慢。

(4)樣本不平衡的時候,對稀有類別的預測准確率低。當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本佔多數。

(5)對訓練數據依賴度特別大,對訓練數據的容錯性太差。如果訓練數據集中,有一兩個數據是錯誤的,剛剛好又在需要分類的數值的旁邊,這樣就會直接導致預測的數據的不準確。

需要一個特別容易解釋的模型的時候。
比如需要向用戶解釋原因的推薦演算法。

通過此次實驗我了解了K近鄰演算法及其思路,該方法的思路是:如果一個樣本在特徵空間中的k個最相似的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
所謂k近鄰演算法,即是給定一個訓練數據集,對新的輸入實例,在訓練數據集中找到與該實例最鄰近的k個實例。

B. K-近鄰演算法(K-NN)

給定一個訓練數據集,對於新的輸入實例, 根據這個實例最近的 k 個實例所屬的類別來決定其屬於哪一類 。所以相對於其它機器學習模型和演算法,k 近鄰總體上而言是一種非常簡單的方法。

找到與該實例最近鄰的實例,這里就涉及到如何找到,即在特徵向量空間中,我們要採取 何種方式來對距離進行度量

距離的度量用在 k 近鄰中我們也可以稱之為 相似性度量 ,即特徵空間中兩個實例點相似程度的反映。在機器學習中,常用的距離度量方式包括歐式距離、曼哈頓距離、餘弦距離以及切比雪夫距離等。 在 k 近鄰演算法中常用的距離度量方式是歐式距離,也即 L2 距離, L2 距離計算公式如下:

一般而言,k 值的大小對分類結果有著重大的影響。 當選擇的 k 值較小的情況下,就相當於用較小的鄰域中的訓練實例進行預測,只有當與輸入實例較近的訓練實例才會對預測結果起作用。但與此同時預測結果會對實例點非常敏感,分類器抗噪能力較差,因而容易產生過擬合 ,所以一般而言,k 值的選擇不宜過小。但如果選擇較大的 k 值,就相當於在用較大鄰域中的悶鄭握訓練實例進行預測,但相應的分類誤差也會增大,模型整體變得簡單,會產生一定程度的欠擬合。所以一般而言,我們需要 採用交叉驗證的方式來選擇合適的 k 值

k 個實例的多數屬於哪叢褲個類,明顯是多數表決的歸類規則。當然還可能使用其他規則,所以第三個關鍵就是 分類決策規則。

回歸:k個實例該屬性值的平均值

它是一個二叉樹的數據結構,方便存儲 K 維空間的數據

KNN 的計算過程是大量計算樣本點之間的距離。為了減少計算距離次數,提升 KNN 的搜索效率,人們提出了 KD 樹(K-Dimensional 的縮寫)。KD 樹是對數據點在 K 維空間中劃分的一種數據結構。在 KD 樹的構造中,每個節點都是 k 維數值點的二叉樹。螞慶既然是二叉樹,就可以採用二叉樹的增刪改查操作,這樣就大大提升了搜索效率。

如果是做分類,你需要引用:from sklearn.neihbors import KNeighborsClassifier
如果是回歸, 需要引用:from sklearn.neighbors import KNeighborsRegressor

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)

C. k近鄰演算法中關鍵的要素是

k近鄰演算法中關鍵的要素是:k值的選取、鄰居距離的度量和分類決策的制訂。

1.k值的選取:

k近鄰演算法優點很明顯,簡單易用,可解釋性強,但也有其不足之處。例如,「多數表決」會在類別分布偏斜時浮現缺陷。也就是說,k值的選取非常重要,出現頻率較多的樣本將會主導測試點的預測結果。

3.分類決策的制訂:

本質上,分類器就是一個由特徵向量,到預測類別的映射函數。k近鄰演算法的分類流程大致如下三步走:(1)計算待測試樣本與訓練集合中每一個樣本的歐式距離;(2)對每一個距離從小到大排序;(3)選擇前k個距離最短的樣本,分類任務採用「少數服從多數」的表決規則。回歸任務則可採用k個近鄰的平均值舉茄作為預測值。

D. 機器學習一般常用的演算法有哪些

機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。

一、線性回歸

一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。

二、Logistic 回歸

它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。

三、線性判別分析(LDA)

在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。

四、決策樹

決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。

五、樸素貝葉斯

其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。

六、K近鄰演算法

K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。

七、Boosting 和 AdaBoost

首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。

八、學習向量量化演算法(簡稱 LVQ)

學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求

E. k近鄰演算法如何做回歸分析

有兩類不同的樣本數據,分別用藍色的小正方形和紅色的小三角形表示,而圖正中間的那個綠色的圓所標示的數據則是待分類的數據。也就是說,現在, 我們不知道中間那個綠色的數據是從屬於哪一類(藍色小正方形or紅色小三角形),下面,我們就要解決這個問題:給這個綠色的圓分類。我們常說,物以類聚,人以群分,判別一個人是一個什麼樣品質特徵的人,常常可以從他/她身邊的朋友入手,所謂觀其友,而識其人。我們不是要判別上圖中那個綠色的圓是屬於哪一類數據么,好說,從它的鄰居下手。但一次性看多少個鄰居呢?從上圖中,你還能看到:
如果K=3,綠色圓點的最近的3個鄰居是2個紅色小三角形和1個藍色小正方形,少數從屬於多數,基於統計的方法,判定綠色的這個待分類點屬於紅色的三角形一類。 如果K=5,綠色圓點的最近的5個鄰居是2個紅色三角形和3個藍色的正方形,還是少數從屬於多數,基於統計的方法,判定綠色的這個待分類點屬於藍色的正方形一類。 於此我們看到,當無法判定當前待分類點是從屬於已知分類中的哪一類時,我們可以依據統計學的理論看它所處的位置特徵,衡量它周圍鄰居的權重,而把它歸為(或分配)到權重更大的那一類。這就是K近鄰演算法的核心思想。
KNN演算法中,所選擇的鄰居都是已經正確分類的對象。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。
KNN 演算法本身簡單有效,它是一種 lazy-learning 演算法,分類器不需要使用訓練集進行訓練,訓練時間復雜度為0。KNN 分類的計算復雜度和訓練集中的文檔數目成正比,也就是說,如果訓練集中文檔總數為 n,那麼 KNN 的分類時間復雜度為O(n)。
KNN方法雖然從原理上也依賴於極限定理,但在類別決策時,只與極少量的相鄰樣本有關。由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。
K 近鄰演算法使用的模型實際上對應於對特徵空間的劃分。K 值的選擇,距離度量和分類決策規則是該演算法的三個基本要素: K 值的選擇會對演算法的結果產生重大影響。K值較小意味著只有與輸入實例較近的訓練實例才會對預測結果起作用,但容易發生過擬合;如果 K 值較大,優點是可以減少學習的估計誤差,但缺點是學習的近似誤差增大,這時與輸入實例較遠的訓練實例也會對預測起作用,是預測發生錯誤。在實際應用中,K 值一般選擇一個較小的數值,通常採用交叉驗證的方法來選擇最優的 K 值。隨著訓練實例數目趨向於無窮和 K=1 時,誤差率不會超過貝葉斯誤差率的2倍,如果K也趨向於無窮,則誤差率趨向於貝葉斯誤差率。 該演算法中的分類決策規則往往是多數表決,即由輸入實例的 K 個最臨近的訓練實例中的多數類決定輸入實例的類別 距離度量一般採用 Lp 距離,當p=2時,即為歐氏距離,在度量之前,應該將每個屬性的值規范化,這樣有助於防止具有較大初始值域的屬性比具有較小初始值域的屬性的權重過大。 KNN演算法不僅可以用於分類,還可以用於回歸。通過找出一個樣本的k個最近鄰居,將這些鄰居的屬性的平均值賦給該樣本,就可以得到該樣本的屬性。更有用的方法是將不同距離的鄰居對該樣本產生的影響給予不同的權值(weight),如權值與距離成反比。該演算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本佔多數。 該演算法只計算「最近的」鄰居樣本,某一類的樣本數量很大,那麼或者這類樣本並不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量並不能影響運行結果。可以採用權值的方法(和該樣本距離小的鄰居權值大)來改進。
該方法的另一個不足之處是計算量較大,因為對每一個待分類的文本都要計算它到全體已知樣本的距離,才能求得它的K個最近鄰點。目前常用的解決方法是事先對已知樣本點進行剪輯,事先去除對分類作用不大的樣本。該演算法比較適用於樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域採用這種演算法比較容易產生誤分。
實現 K 近鄰演算法時,主要考慮的問題是如何對訓練數據進行快速 K 近鄰搜索,這在特徵空間維數大及訓練數據容量大時非常必要。

F. K-近鄰演算法簡介

1.K-近鄰(KNearestNeighbor,KNN)演算法簡介 :對於一個未知的樣本,我們可以根據離它最近的k個樣本的類別來判斷它的類別。

以下圖為例,對於一個未知樣本綠色小圓,我們可以選取離它最近的3的樣本,其中包含了2個紅色三角形,1個藍色正方形,那麼我們可以判斷綠色小圓屬於紅色三角形這一類。
我們也可以選取離它最近的5個樣本,其中包含了3個藍色正方形,2個紅色三角形,那麼我們可以判斷綠色小圓屬於藍色正方形這一類。

3.API文檔

下面我們來對KNN演算法中的參數項做一個解釋說明:

'n_neighbors':選取的參考對象的個數(鄰居個數),默認值為5,也可以自己指定數值,但不是n_neighbors的值越大分類效果越好,最佳值需要我們做一個驗證。
'weights': 距離的權重參數,默認uniform。
'uniform': 均勻的權重,所有的點在每一個類別中的權重是一樣的。簡單的說,就是每個點的重要性都是一樣的。
'distance':權重與距離的倒數成正比,距離近的點重要性更高,對於結果的影響也更大。
'algorithm':運算方法,默認auto。
'auto':根絕模型fit的數據自動選擇最合適的運算方法。
'ball_tree':樹模型演算法BallTree
'kd_tree':樹模型演算法KDTree
'brute':暴力演算法
'leaf_size':葉子的尺寸,默認30。只有當algorithm = 'ball_tree' or 'kd_tree',這個參數需要設定。
'p':閔可斯基距離,當p = 1時,選擇曼哈頓距離;當p = 2時,選擇歐式距離。
n_jobs:使用計算機處理器數目,默認為1。當n=-1時,使用所有的處理器進行運算。

4.應用案例演示
下面以Sklearn庫中自帶的數據集--手寫數字識別數據集為例,來測試下kNN演算法。上一章,我們簡單的介紹了機器學習的一般步驟:載入數據集 - 訓練模型 - 結果預測 - 保存模型。這一章我們還是按照這個步驟來執行。
[手寫數字識別數據集] https://scikit-learn.org/stable/moles/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits

5.模型的方法
每一種模型都有一些它獨有的屬性方法(模型的技能,能做些什麼事),下面我們來了解下knn演算法常用的的屬性方法。

6.knn演算法的優缺點
優點:
簡單,效果還不錯,適合多分類問題
缺點:
效率低(因為要計算預測樣本距離每個樣本點的距離,然後排序),效率會隨著樣本量的增加而降低。

G. 什麼叫做knn演算法

在模式識別領域中,最近鄰居法(KNN演算法,又譯K-近鄰演算法)是一種用於分類和回歸的非參數統計方法。

在這兩種情況下,輸入包含特徵空間(Feature Space)中的k個最接近的訓練樣本。

1、在k-NN分類中,輸出是一個分類族群。一個對象的分類是由其鄰居的「多數表決」確定的,k個最近鄰居(k為正整數,通常較小)中最常見的分類決定了賦予該對象的類別。若k=1,則該對象的類別直接由最近的一個節點賦予。

2、在k-NN回歸中,輸出是該對象的屬性值。該值是其k個最近鄰居的值的平均值。

最近鄰居法採用向量空間模型來分類,概念為相同類別的案例,彼此的相似度高,而可以藉由計算與已知類別案例之相似度,來評估未知類別案例可能的分類。

K-NN是一種基於實例的學習,或者是局部近似和將所有計算推遲到分類之後的惰性學習。k-近鄰演算法是所有的機器學習演算法中最簡單的之一。

無論是分類還是回歸,衡量鄰居的權重都非常有用,使較近鄰居的權重比較遠鄰居的權重大。例如,一種常見的加權方案是給每個鄰居權重賦值為1/ d,其中d是到鄰居的距離。

鄰居都取自一組已經正確分類(在回歸的情況下,指屬性值正確)的對象。雖然沒要求明確的訓練步驟,但這也可以當作是此演算法的一個訓練樣本集。

k-近鄰演算法的缺點是對數據的局部結構非常敏感。

K-均值演算法也是流行的機器學習技術,其名稱和k-近鄰演算法相近,但兩者沒有關系。數據標准化可以大大提高該演算法的准確性。

參數選擇

如何選擇一個最佳的K值取決於數據。一般情況下,在分類時較大的K值能夠減小雜訊的影響,但會使類別之間的界限變得模糊。一個較好的K值能通過各種啟發式技術(見超參數優化)來獲取。

雜訊和非相關性特徵的存在,或特徵尺度與它們的重要性不一致會使K近鄰演算法的准確性嚴重降低。對於選取和縮放特徵來改善分類已經作了很多研究。一個普遍的做法是利用進化演算法優化功能擴展,還有一種較普遍的方法是利用訓練樣本的互信息進行選擇特徵。

在二元(兩類)分類問題中,選取k為奇數有助於避免兩個分類平票的情形。在此問題下,選取最佳經驗k值的方法是自助法。

H. 01 KNN演算法 - 概述

KNN演算法 全稱是K近鄰演算法 (K-nearst neighbors,KNN)

KNN是一種基本的機器學習演算法,所謂K近鄰,就是k個最近的鄰居。即每個樣本都可以用和它 最接近的k個鄰近位置的樣本 來代替。

KNN是個相對比較簡單的演算法,比起之前提過的回歸演算法和分類演算法更容易。如果一個人從來沒有接觸過機器學習的演算法,拿到數據後最容易想到的分類方式就是K近鄰。打個比方:你們想了解我是個怎樣的人,然後你們發現我的身邊關系最密切的朋友是一群逗逼,所以你們可以默認我也是一個逗逼。

KNN演算法即可以應用於 分類演算法 中,也可以應用於 回歸演算法 中。

KNN在做回歸和分類的主要區別,在於最後做預測時候的決策不同。在分類預測時,一般採用 多數表決法 。在做回歸預測時,一般使用 平均值法

多數表決法: 分類時,哪些樣本離我的目標樣本比較近,即目標樣本離哪個分類的樣本更接近。

平均值法: 預測一個樣本的平均身高,觀察目標樣本周圍的其他樣本的平均身高,我們認為平均身高是目標樣本的身高。

再舉個例子:
分別根據甜度和脆度兩個特徵來判斷食物的種類。
根據樣本我們普遍發現:
比較甜,比較脆的食物都是水果。
不甜,不太脆的食物是蛋白質。
不甜,比較脆的食物是蔬菜。
於是根據目標的樣本甜度和脆度兩個特徵,我們可以對其進行分類了。

k值的選擇:
先選一個較小的值,然後通過交叉驗證選擇一個合適的最終值。
k越小,即使用較小的領域中的樣本進行預測,訓練誤差會減小,但模型會很復雜,以至於過擬合。
k越大,即使用交大的領域中的樣本進行預測,訓練誤差會增大,模型會變得簡單,容易導致欠擬合。

距離的度量:
使用歐幾里得距離:歐幾里得度量(euclidean metric)(也稱歐氏距離)是一個通常採用的距離定義,指在m維空間中兩個點之間的真實距離,或者向量的自然長度(即該點到原點的距離)。在二維和三維空間中的歐氏距離就是兩點之間的實際距離。

決策規劃:
分類:多數表決法、加權多數表決法。
回歸:平均值法、加權平均值法。

加權多數表決法:

平均值法和加權平均值法:
同樣看上面的圖,上方的三個樣本值為3,下面兩個樣本值為2,預測?的值。
如果不考慮加權,直接計算平均值:
(3 * 3 + 2 * 2) / 5 = 2.6

加權平均值:權重分別為1/7和2/7。計算加權平均值:
(3 * 3* 1/7 + 2 * 2 * 2/7) / 5 = 2.43

1、蠻力實現(brute):
計算預測樣本到所有訓練集樣本的距離,然後選擇最小的k個距離,即可得到k個最鄰近點。
缺點:當特徵數多、樣本數多時,演算法的效率比較低。

2、KD樹 (kd_tree):
首先對訓練數據進行建模,構建KD樹,然後根據建好的模型來獲取鄰近樣本數據。
後續內容會介紹KD樹搜索最小值的方式,讓大家直觀感受到KD樹比蠻力實現要少檢索多少數據。

閱讀全文

與k近鄰演算法與局部回歸相關的資料

熱點內容
安卓手機mp3壓縮工具 瀏覽:214
程序員和交易員 瀏覽:422
怎麼變字體樣式app 瀏覽:173
名字叫湯什麼的視頻app 瀏覽:207
金屬加密鍵盤聯系電話 瀏覽:335
自製解壓牛奶盒子教程 瀏覽:62
編譯高手的圖片 瀏覽:922
單片機數碼管顯示時分秒 瀏覽:780
手指解壓最簡單的方法 瀏覽:343
韓國郵箱伺服器地址 瀏覽:967
android版本介紹 瀏覽:410
pdf文件加密軟體 瀏覽:410
長沙住房app怎麼看備案 瀏覽:603
安裝加密軟體的電腦會被監控么 瀏覽:221
java微博源碼 瀏覽:569
堆排序簡單實現python 瀏覽:461
單片機引腳與鍵盤的關系 瀏覽:132
壓縮火柴盒製作 瀏覽:38
谷歌地圖android偏移 瀏覽:214
bitlocker硬碟加密空間 瀏覽:238