導航:首頁 > 源碼編譯 > 乘法取模快速演算法

乘法取模快速演算法

發布時間:2022-03-05 10:01:40

A. 多位數乘法的快速計算方法有哪些

多位數乘法的快速計算方法如下:

1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。

2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。

3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。

4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861

5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。

(1)乘法取模快速演算法擴展閱讀

乘法原理:

如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。

在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。

設 A是 m×n 的矩陣。

可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)

1、Ax=0 肯定是 A'Ax=0 的解,好理解。

2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0

故兩個方程是同解的。

同理可得 r(AA')=r(A')

另外 有 r(A)=r(A')

所以綜上 r(A)=r(A')=r(AA')=r(A'A)

B. 乘法快速心算,最好能舉例如12*14演算法公式42*99

12乘以10=120在4乘以12=48 120+48=168 42乘以100=4200 4200-42=4158

C. 乘法的最快演算法

乘法的最快演算法當然是用計算器算了,數值輸進去,按個等號,結果就會出來。
計算器是現代人發明的可以進行數字運算的電子機器。現代的電子計算器能進行數學運算的手持電子機器,擁有集成電路晶元,但結構比電腦簡單得多,可以說是第一代的電子計算機(電腦),且功能也較弱,但較為方便與廉價,可廣泛運用於商業交易中,是必備的辦公用品之一。除顯示計算結果外,還常有溢出指示、錯誤指示等。計算器電源採用交流轉換器或電池,電池可用交流轉換器或太陽能轉換器再充電。為節省電能,計算器都採用CMOS工藝製作的大規模集成電路。

D. 數學乘法簡便計算方法技巧

要有六大方法: 「湊整巧算」——運用加法的交換律、結合律進行計算。運用乘法的交換律、結合律進行簡算。 運用減法的性質進行簡算,同時注意逆進行。運用除法的性質進行簡算 (除以一個數,先化為乘以一個數的倒數,再分配)。運用乘法分配律進行簡算。 混合運算(根據混合運算的法則)。 具體解釋:一、「湊整巧算」——運用加法的交換律、結合律進行計算。湊整,特別是「湊十」、「湊百」、「湊千」等,是加減法速算的重要方法。加法交換律 定義:兩個數交換位置和不變,公式:A+B =B+A,例如:6+18+4=6+4+18 加法結合律定義:先把前兩個數相加,或者先把後兩個數相加,和不變。公式:(A+B)+C=A+(B+C),例如:(6+18)+2=6+(18+2) 引申——湊整例如:1.999+19.99+199.9+1999 =2+20+200+2000-0.001-0.01-0.1-1 =2222-1.111 =2220.889 二、運用乘法的交換律、結合律進行簡算。乘法交換律定義:兩個因數交換位置,積不變. 公式:A×B=B×A 例如:125×12×8=125×8×12 乘法結合律定義:先乘前兩個因數,或者先乘後兩個因數,積不變。 公式:A×B×C=A×(B×C), 例如:30×25×4=30×(25×4)三、運用減法的性質進行簡算,同時注意逆進行。減法 定義:一個數連續減去兩個數,可

E. 誰知道多位數乘法的快速計算方法

多位數乘法的快速計算方法如下:

1、十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12×14=168
註:個位相乘,不夠兩位數要用0佔位。

2、頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
註:個位相乘,不夠兩位數要用0佔位。

3、第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
註:個位相乘,不夠兩位數要用0佔位。

4、幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861

5、11乘任意數:口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
註:和滿十要進一。

6、十幾乘任意數:口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數後面每一 個數字,加下一位數,再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
註:和滿十要進一。

F. 大數相乘 快速演算法

給你一個吧
速度還可以
自己讀下代碼
/**************************************
演算法復雜度為:O(longhta*longthb)
longtha為乘數的位數
longhtb為被乘數的位數
***************************************/

#include <stdio.h>
#include <string.h>
#include <conio.h>
#define LEN 1000
void mult(char [],char [],char []);
main()
{
char op1[LEN],op2[LEN],op3[LEN*2-1];
scanf("%s%s",op1,op2);
mult(op1,op2,op3);
printf("%s\n",op3);
getch();
return 0;
}
void reverse(char a[])
{
int longth=strlen(a);
int i;
for(i=0;i<longth/2;i++){
char t;
t=a[i];
a[i]=a[longth-i-1];
a[longth-i-1]=t;
}
}
void mult(char op1[LEN],char op2[LEN],char ans[LEN*2-1])
{
char top1[LEN];
char top2[LEN];
strcpy(top1,op1);
strcpy(top2,op2);
reverse(top1);
reverse(top2);
int k;
int top1s=strlen(top1);
int top2s=strlen(top2);
for(k=0;k<top1s+top2s;k++){
ans[k]='0';
}
int i,j;
int jw,ys;
int longth;
for(j=0;j<top2s;j++){
jw=0;
for(i=0;i<top1s;i++){
ys=((top1[i]-'0')*(top2[j]-'0')+jw+ans[i+j]-'0')%10;
jw=((top1[i]-'0')*(top2[j]-'0')+jw+ans[i+j]-'0')/10;
ans[i+j]=ys+'0';
}
if(jw>0){
ans[i+j]=jw+'0';
}
}
longth=i+j-1;
if(jw>0)
ans[longth++]=jw+'0';
ans[longth]='\0';
reverse(ans);
}

G. 乘法簡便運算技巧

乘法簡便運算方法

一、結合法

一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。

例1 計算:19×4×5

19×4×5

=19×(4×5)

=19×20

=380

在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。

二、分解法

一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。

例2 計算:45×18

48×18

=45×(2×9)

=45×2×9

=90×9

=810

將18分解成2×9的形式,再將括弧去掉,使計算簡便。

三、拆數法

有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。

例3 計算:99×99+199

(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:

99×99+199

=99×99+99+100

=99×(99+1)+100

=99×100+100

=10000

(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:

99×99+199

=(100-1)×99+(100-1)+100

=(100-1)×(99+1)+100

=(100-1)×100+100

=10000

四、改數法

有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。

例4 計算:25×5×48

25×5×48

=25×5×4×12

=(25×4)×(5×12)

=100×60

=6000

把48轉化成4×12的形式,使計算簡便。

例5 計算:16×25×25

因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。

16×25×25

=(4×25)×(4×25)

=100×100

=10000

閱讀全文

與乘法取模快速演算法相關的資料

熱點內容
命令方塊指令冰封劍 瀏覽:784
android中so文件 瀏覽:276
手工用氣球做的捏捏樂解壓神器 瀏覽:196
app升級後就閃退怎麼辦 瀏覽:35
手錶上的樂塗app怎麼下載 瀏覽:721
程序員身上的六宗罪是什麼 瀏覽:145
游戲編程精粹6 瀏覽:69
修復ie的命令 瀏覽:602
linux伺服器怎麼查看地址 瀏覽:65
底部異地持倉源碼 瀏覽:105
加密應用手機 瀏覽:798
程序員考試考什麼科目 瀏覽:485
程序員必備文檔編輯 瀏覽:960
踩水果解壓大全 瀏覽:634
什麼是dk伺服器在 瀏覽:461
nusoapphp下載 瀏覽:929
黑莓原生解壓rar 瀏覽:956
百度解壓縮在哪 瀏覽:788
硬解壓卡怎麼用 瀏覽:183
新買的聯想伺服器怎麼配置 瀏覽:757