1. 蟻群演算法,退火演算法這些東西究竟屬於什麼,這些東西要從哪裡才能系統學習
第1章緒論
1.1螞蟻的基本習性
1.1.1螞蟻的信息系統
1.1.2蟻群社會的遺傳與進化
1.2蟻群覓食行為與覓食策略
1.2.1螞蟻的覓食行為
1.2.2螞蟻的覓食策略
1.3人工蟻群演算法的基本思想
1.3.1人工蟻與真實螞蟻的異同
1.3.2人工蟻群演算法的實現過程
1.4蟻群優化演算法的意義及應用
1.4.1蟻群優化演算法的意義
l.4.2蟻群演算法的應用
1.5蟻群演算法的展望
第2章螞蟻系統——蟻群演算法的原型
2.1螞蟻系統模型的建立
2.2蟻量系統和蟻密系統的模型
2.3蟻周系統模型
第3章改進的蟻群優化演算法
3.1帶精英策略的螞蟻系統
3.2基於優化排序的螞蟻系統
3.3蟻群系統
3.3.1蟻群系統狀態轉移規則
3.3.2蟻群系統全局更新規則
3.3.3蟻群系統局部更新規則
3.3.4候選集合策略
3.4最大一最小螞蟻系統
3.4.1信息素軌跡更新
3.4.2信息素軌跡的限制
3.4.3信息素軌跡的初始化
3.4.4信息素軌跡的平滑化
3.5最優一最差螞蟻系統
3.5.1最優一最差螞蟻系統的基本思想
3.5.2最優一最差螞蟻系統的工作過程
第4章蟻群優化演算法的模擬研究
4.1螞蟻系統三類模型的模擬研究
4.1.1三類模型性能的比較
4.2.2基於統計的參數優化
4.2基於蟻群系統模型的模擬研究
4.2.1局部優化演算法的有效性
4.2.2蟻群系統與其他啟發演算法的比較
4.3最大一最小螞蟻系統的模擬研究
4.3.1信息素軌跡初始化研究
4.3.2信息素軌跡量下限的作用
4.3.3蟻群演算法的對比
4.4最優一最差螞蟻系統的模擬研究
4.4.1參數ε的設置
4.4.2幾種改進的蟻群演算法比較
第5章蟻群演算法與遺傳、模擬退火演算法的對比
5.1遺傳演算法
5.1.1遺傳演算法與自然選擇
5.1.2遺傳演算法的基本步驟
5.1.3旅行商問題的遺傳演算法實現
5.2模擬退火演算法
5.2.1物理退火過程和Metroplis准則
5.2.2模擬退火法的基本原理
5.3蟻群演算法與遺傳演算法、模擬退火演算法的比較
5.3.1三種演算法的優化質量比較
5.3.2三種演算法收斂速度比較
5.3.3三種演算法的特點與比較分析
第6章蟻群演算法與遺傳、免疫演算法的融合
6.1遺傳演算法與螞蟻演算法融合的GAAA演算法
6.1.1遺傳演算法與螞蟻演算法融合的基本思想
……
第7章自適應蟻群演算法
第8章並行蟻群演算法
第9章蟻群演算法的收斂性與蟻群行為模型
第10章蟻群演算法在優化問題中的應用
附錄
參考文獻
2. 蟻群演算法的概念,最好能舉例說明一些蟻群演算法適用於哪些問題!
概念:蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值
其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序
應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內
引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點: 1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。 引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。 既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了! 蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。 其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。
具體參考http://ke..com/view/539346.htm
希望對你有幫助,謝謝。
3. 哪本python書立有蟻群演算法
簡介
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
定義
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種揮發性分泌物pheromone (稱為信息素,該物質隨著時間的推移會逐漸揮發消失,信息素濃度的大小表徵路徑的遠近)來實現的,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物。有些螞蟻並沒有像其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果另開辟的道路比原來的其他道路更短,那麼,漸漸地,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。
解決的問題
三維地形中,給出起點和重點,找到其最優路徑。
程序代碼:
numpy as npimport matplotlib.pyplot as plt%pylabcoordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],[1340.0,725.0],[1740.0,245.0]])def getdistmat(coordinates):num = coordinates.shape[0]distmat = np.zeros((52,52))for i in range(num):for j in range(i,num):distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])return distmatdistmat = getdistmat(coordinates)numant = 40 #螞蟻個數numcity = coordinates.shape[0] #城市個數alpha = 1 #信息素重要程度因子beta = 5 #啟發函數重要程度因子rho = 0.1 #信息素的揮發速度Q = 1iter = 0itermax = 250etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #啟發函數矩陣,表示螞蟻從城市i轉移到矩陣j的期望程度pheromonetable = np.ones((numcity,numcity)) # 信息素矩陣pathtable = np.zeros((numant,numcity)).astype(int) #路徑記錄表distmat = getdistmat(coordinates) #城市的距離矩陣lengthaver = np.zeros(itermax) #各代路徑的平均長度lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路徑長度pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路徑長度while iter < itermax:# 隨機產生各個螞蟻的起點城市if numant <= numcity:#城市數比螞蟻數多pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]else: #螞蟻數比城市數多,需要補足pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]length = np.zeros(numant) #計算各個螞蟻的路徑距離for i in range(numant):visiting = pathtable[i,0] # 當前所在的城市#visited = set() #已訪問過的城市,防止重復#visited.add(visiting) #增加元素unvisited = set(range(numcity))#未訪問的城市unvisited.remove(visiting) #刪除元素for j in range(1,numcity):#循環numcity-1次,訪問剩餘的numcity-1個城市#每次用輪盤法選擇下一個要訪問的城市listunvisited = list(unvisited)probtrans = np.zeros(len(listunvisited))for k in range(len(listunvisited)):probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)*np.power(etatable[visiting][listunvisited[k]],alpha)cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()cumsumprobtrans -= np.random.rand()k = listunvisited[find(cumsumprobtrans>0)[0]] #下一個要訪問的城市pathtable[i,j] = kunvisited.remove(k)#visited.add(k)length[i] += distmat[visiting][k]visiting = klength[i] += distmat[visiting][pathtable[i,0]] #螞蟻的路徑距離包括最後一個城市和第一個城市的距離#print length# 包含所有螞蟻的一個迭代結束後,統計本次迭代的若干統計參數lengthaver[iter] = length.mean()if iter == 0:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()else:if length.min() > lengthbest[iter-1]:lengthbest[iter] = lengthbest[iter-1]pathbest[iter] = pathbest[iter-1].()else:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()# 更新信息素changepheromonetable = np.zeros((numcity,numcity))for i in range(numant):for j in range(numcity-1):changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]pheromonetable = (1-rho)*pheromonetable + changepheromonetableiter += 1 #迭代次數指示器+1#觀察程序執行進度,該功能是非必須的if (iter-1)%20==0:print iter-1# 做出平均路徑長度和最優路徑長度fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))axes[0].plot(lengthaver,'k',marker = u'')axes[0].set_title('Average Length')axes[0].set_xlabel(u'iteration')axes[1].plot(lengthbest,'k',marker = u'')axes[1].set_title('Best Length')axes[1].set_xlabel(u'iteration')fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')plt.close()#作出找到的最優路徑圖bestpath = pathbest[-1]plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$cdot$')plt.xlim([-100,2000])plt.ylim([-100,1500])for i in range(numcity-1):#m,n = bestpath[i],bestpath[i+1]print m,nplt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')ax=plt.gca()ax.set_title("Best Path")ax.set_xlabel('X axis')ax.set_ylabel('Y_axis')plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')plt.close()4. 如何有效地提高蟻群演算法演算法的效率
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型技術.它由Marco Dorigo於1992年在他的博士論文中引入,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為.
蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值.
蟻群演算法是一種求解組合最優化問題的新型通用啟發式方法,該方法具有正反饋、分布式計算和富於建設性的貪婪啟發式搜索的特點.通過建立適當的數學模型,基於故障過電流的配電網故障定位變為一種非線性全局尋優問題.由柳洪平創建.
預期的結果:
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物.當一隻找到食物以後,它會向環境釋放一種信息素,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物!有些螞蟻並沒有象其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果令開辟的道路比原來的其他道路更短,那麼,漸漸,更多的螞蟻被吸引到這條較短的路上來.最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著.
原理:
為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序.
然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現.事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來.這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內.
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素.每個螞蟻都僅僅能感知它范圍內的環境信息.環境以一定的速率讓信息素消失.
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去.否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻多會以小概率犯錯誤,從而並不是往信息素最多的點移動.螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應.
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動.為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開.
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為.
7、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少.
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了.比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物.
問題:
說了這么多,螞蟻究竟是怎麼找到食物的呢?
在沒有螞蟻找到食物的時候,環境沒有有用的信息素,那麼螞蟻為什麼會相對有效的找到食物呢?這要歸功於螞蟻的移動規則,尤其是在沒有信息素時候的移動規則.首先,它要能盡量保持某種慣性,這樣使得螞蟻盡量向前方移動(開始,這個前方是隨機固定的一個方向),而不是原地無謂的打轉或者震動;其次,螞蟻要有一定的隨機性,雖然有了固定的方向,但它也不能像粒子一樣直線運動下去,而是有一個隨機的干擾.這樣就使得螞蟻運動起來具有了一定的目的性,盡量保持原來的方向,但又有新的試探,尤其當碰到障礙物的時候它會立即改變方向,這可以看成一種選擇的過程,也就是環境的障礙物讓螞蟻的某個方向正確,而其他方向則不對.這就解釋了為什麼單個螞蟻在復雜的諸如迷宮的地圖中仍然能找到隱蔽得很好的食物.
當然,在有一隻螞蟻找到了食物的時候,其他螞蟻會沿著信息素很快找到食物的.
螞蟻如何找到最短路徑的?這一是要歸功於信息素,另外要歸功於環境,具體說是計算機時鍾.信息素多的地方顯然經過這里的螞蟻會多,因而會有更多的螞蟻聚集過來.假設有兩條路從窩通向食物,開始的時候,走這兩條路的螞蟻數量同樣多(或者較長的路上螞蟻多,這也無關緊要).當螞蟻沿著一條路到達終點以後會馬上返回來,這樣,短的路螞蟻來回一次的時間就短,這也意味著重復的頻率就快,因而在單位時間里走過的螞蟻數目就多,灑下的信息素自然也會多,自然會有更多的螞蟻被吸引過來,從而灑下更多的信息素……;而長的路正相反,因此,越來越多地螞蟻聚集到較短的路徑上來,最短的路徑就近似找到了.也許有人會問局部最短路徑和全局最短路的問題,實際上螞蟻逐漸接近全局最短路的,為什麼呢?這源於螞蟻會犯錯誤,也就是它會按照一定的概率不往信息素高的地方走而另闢蹊徑,這可以理解為一種創新,這種創新如果能縮短路途,那麼根據剛才敘述的原理,更多的螞蟻會被吸引過來.
引申
跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素.信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快.
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性.
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍.
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前.而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈.
蟻群演算法的實現
下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.
其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素.信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快.
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性.
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍.
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前.而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈.
5. 什麼是蟻群演算法,神經網路演算法,遺傳演算法
蟻群演算法又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
神經網路
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
遺傳演算法,是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。
6. 信用分析的古典信用分析方法
因此,在信貸決策過程中,信貸管理人員的專業知識、主觀判斷以及某些要考慮的關鍵要素權重均為最重要的決定因素。
在專家制度法下,絕大多數銀行都將重點集中在借款人的「5c」上,即品德與聲望(character)、資格與能力(capacity)、資金實力(capital or cash) 、擔保(collateral)、經營條件或商業周期(condition)。也有些銀行將信用分析的內容歸納為「5w」或「5p」。 「5w」系指借款人(who)、借款用途(why) 、還款期限(when)、擔保物(what)、如何還款(how);「5p」系指個人因素( personal)、目的因素( purpose) 、償還因素( payment)、保障因素(protection)、前景因素(perspective)。這種方法的缺陷是主觀性太強,只能作為一種輔助性信用分析工具。 貸款評級分類模型是金融機構在美國貨幣監理署(occ)最早開發的評級系統基礎上拓展而來,occ對貸款組合分為正常、關注、次級、可疑、損失等5類,並要求對不同的貸款提取不同比例的損失准備金以彌補貸款損失。
在我國,1998年以前各商業銀行貸款分類的方法一直沿用財政部《金融保險企業財務制度》的規定,把貸款分為正常、逾期、呆滯、呆賬四類,後三類合稱不良貸款,簡稱「一逾兩呆法」。 這一方法低估了不良貸款, 因為它沒包括仍支付利息尚未展期的高風險貸款。1998年我國開始借鑒國際監管經驗,對貸款分類進行改革,按照風險程度將貸款劃分為正常、關注、次級、可疑、損失五類,即五級分類方法。2003年12月中國銀監會發布文件決定自2004年1月1日起,我國所有經營信貸業務的金融機構正式實施貸款五級分類制度。 信用評分方法是對反映借款人經濟狀況或影響借款人信用狀況的若干指標賦予一定權重,通過某些特定方法得到信用綜合分值或違約概率值,並將其與基準值相比來決定是否給予貸款以及貸款定價,其代表為z計分模型。
z計分模型是Altman 1968 年提出的以財務比率為基礎的多變數模型。該模型運用多元判別分析法,通過分析一組變數,使其在組內差異最小化的同時實現組間差異最大化,在此過程中要根據統計標准選入或捨去備選變數,從而得出z 判別函數。根據z值的大小同衡量標准相比,從而區分破產公司和非破產公司。1995 年,對於非上市公司,Altman對z 模型進行了修改,得到z′計分模型。Altman、Haldeman 和Narayannan在1977 年對原始的z 計分模型進行擴展,建立的第二代的zeta 信用風險模型。該模型在公司破產前5 年即可有效劃分出將要破產的公司,其中破產前1 年准確度大於90 % ,破產前5 年的准確度大於70 %。新模型不僅適用於製造業,而且其有效性同樣適用於零售業。上述兩種模型中,zeta 分類准確度比z 計分模型高,特別是破產前較長時間的預測准確度相對較高。由於方法簡便、成本低、效果佳,上述方法應用十分廣泛。
值得注意的是該類模型構建中的數理方法,綜合以來,主要有以下幾種:
1.判別分析法(discriminant analysis)
判別分析法(discriminant analysis,簡稱DA) 是根據觀察到的一些統計數字特徵,對客觀事物進行分類,以確定事物的類別。它的特點是已經掌握了歷史上每個類別的若干樣本,總結出分類的規律性,建立判別公式。當遇到新的事物時,只要根據總結出來的判別公式,就能判別事物所屬的類別。
da 的關鍵就在於建立判別函數。目前,統計學建立判別函數常用方法有:一是未知總體分布情況下,根據個體到各個總體的距離進行判別的距離判別函數;二是已知總體分布的前提下求得平均誤判概率最小的分類判別函數,也稱距離判別函數,通常稱為貝葉斯(bayes)判別函數;三是未知總體分布或未知總體分布函數前提下的根據費歇(fisher) 准則得到的最優線性判別函數。
2.多元判別分析法(multivariate discriminant analysis)
多元判別分析法(MDA)是除美國外的其他國家使用最多的統計方法。多元線性判別分析法,可以具體為一般判別分析(不考慮變數篩選)和定量資料的逐步判別分析(考慮變數篩選)。但應用多元判別分析(MDA)有三個主要假設:變數數據是正態分布的;各組的協方差是相同的;每組的均值向量、協方差矩陣、先驗概率和誤判代價是已知的。
該種方法的不足之處是必須建立在大量的、可靠的歷史統計數據的基礎之上,這在發展中國家如中國是難以具備的前提條件。
3.logit 分析判別方法
logit 分析與判別分析法的本質差異在於前者不要求滿足正態分布或等方差, 從而消除了MDA 模型的正態分布假定的局限性。其模型主要採用了logistic 函數。
該模型的問題在於當樣本點存在完全分離時,模型參數的最大似然估計可能不存在,模型的有效性值得懷疑,因此在正態的情況下不滿足其判別正確率高於判別分析法的結果。另外該方法對中間區域的判別敏感性較強,導致判別結果的不穩定。
4.神經網路分析法(artificial neural network,簡稱ANN)
神經網路分析法是從神經心理學和認知科學研究成果出發,應用數學方法發展起來的一種具有高度並行計算能力、自學能力和容錯能力的處理方法。它能有效解決非正態分布、非線性的信用評估問題,其結果介於0與1之間,在信用風險的衡量下,即為違約概率。神經網路分析方法應用於信用風險評估的優點在於其無嚴格的假設限制且具有處理非線性問題的能力。Altman、Marco和Varetto(1994)在對義大利公司財務危機預測中應用了神經網路分析法;Coats及Fant(1993)Trippi採用神經網路分析法分別對美國公司和銀行財務危機進行預測,取得較好效果。然而,要得到一個較好的神經網路結構,需要人為隨機調試,需要耗費大量人力和時間,加之該方法結論沒有統計理論基礎,解釋性不強,所以應用受到很大限制。
5.聚類分析法(cluster analysis)
聚類分析(cluster analysis)屬於非參數統計方法。信用風險分析中它根據由借款人的指標計算出的在樣本空間的距離,將其分類。這種方法一個主要優點是不要求總體的具體分布;可對變數採用名義尺度,次序尺度,因此該方法可用於定量研究,也可對現實中的無法用數值精確表述的屬性進行分析。這很適用於信用風險分析中按照定量指標(盈利比、速動比等) 和定性指標(管理水平、信用等級等) 對並不服從一定分布特性的數據信息分類的要求。例如,Lundy運用該方法對消費貸款申請者的典型信用申請數據及年齡、職業、婚否、居住條件進行處理分成6類並對每類回歸評分,它不僅將借款人進行有效的分類而且幫助商業銀行確定貸款方式策略。
6.k近鄰判別法(k-Nearest Neighbor)
k近鄰判別法在一定距離概念下按照若干定量變數從樣本中選取與確定向量距離最短k個樣本為一組,適用於初始分布和數據採集范圍限制較少時,減小了以函數形式表達內容的要求。另外,knn 通過將變數在樣本整體范圍內分為任意多決策區間,而近似樣本分布。Tametal將之用於信用風險分析,取馬氏距離,從流動性、盈利性、資本質量角度選出的19 個變數指標,對樣本分類,經比較其分類結果的准確性不如lda、lg 以及神經網路。原因在於在同樣的樣本容量下,若對具體問題的確存在特定的參數模型並可能找出時,非參數方法不及參數模型效率高。
7.層次分析法(AHP)
該方法強調人的思維判斷在決策過程中的作用,通過一定模式使決策思維過程規范化,它適用於定性與定量因素相結合、特別是定性因素起主導作用的問題,企業信用等級綜合評價就是這種定性因素起主導作用的問題。AHP 法的基本步驟是:建立遞階層次結構,構造判斷矩陣,求此矩陣的最大特徵根及其對應的特徵向量,確定權重,並進行一致性檢驗。
8.其他方法
此外還存在著其他眾多的方法:probit 法、因子-logistic法、模糊數學方法、混沌法及突變級數法、灰關聯熵、主成分分析綜合打分法、主成分分析與理想點的結合方法、原蟻群演算法、數據包絡判別法等等。關於這些方法的應用,將在後面的實證部分進行探討。
7. 求生物學 蟻群演算法
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻都會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
6、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了。比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物。
8. 如何用蟻群演算法來計算固定時間內走更多的城市且路程最短
概念:蟻群演算法(ant colony optimization,ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法.它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為.蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值
其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序
應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內
引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.
9. 人工蜂群演算法的matlab的編程詳細代碼,最好有基於人工蜂群演算法的人工神經網路的編程代碼
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
參考下蟻群訓練BP網路的代碼。
10. 蟻群演算法的介紹
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。