A. 快速排序演算法的示例代碼
usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Text;namespacetest{classQuickSort{staticvoidMain(string[]args){int[]array={49,38,65,97,76,13,27};sort(array,0,array.Length-1);Console.ReadLine();}/**一次排序單元,完成此方法,key左邊都比key小,key右邊都比key大。**@paramarray排序數組**@paramlow排序起始位置**@paramhigh排序結束位置**@return單元排序後的數組*/privatestaticintsortUnit(int[]array,intlow,inthigh){intkey=array[low];while(low<high){/*從後向前搜索比key小的值*/while(array[high]>=key&&high>low)--high;/*比key小的放左邊*/array[low]=array[high];/*從前向後搜索比key大的值,比key大的放右邊*/while(array[low]<=key&&high>low)++low;/*比key大的放右邊*/array[high]=array[low];}/*左邊都比key小,右邊都比key大。//將key放在游標當前位置。//此時low等於high*/array[low]=key;foreach(intiinarray){Console.Write({0} ,i);}Console.WriteLine();returnhigh;}/**快速排序*@paramarry*@return*/publicstaticvoidsort(int[]array,intlow,inthigh){if(low>=high)return;/*完成一次單元排序*/intindex=sortUnit(array,low,high);/*對左邊單元進行排序*/sort(array,low,index-1);/*對右邊單元進行排序*/sort(array,index+1,high);}}}運行結果:27 38 13 49 76 97 65
13 27 38 49 76 97 6513 27 38 49 65 76 97
快速排序就是遞歸調用此過程——在以49為中點分割這個數據序列,分別對前面一部分和後面一部分進行類似的快速排序,從而完成全部數據序列的快速排序,最後把此數據序列變成一個有序的序列,根據這種思想對於上述數組A的快速排序的全過程如圖6所示:
初始狀態 {49 38 65 97 76 13 27} 進行一次快速排序之後劃分為 {27 38 13} 49 {76 97 65} 分別對前後兩部分進行快速排序{27 38 13} 經第三步和第四步交換後變成 {13 27 38} 完成排序。{76 97 65} 經第三步和第四步交換後變成 {65 76 97} 完成排序。圖示 快速排序的最壞情況基於每次劃分對主元的選擇。基本的快速排序選取第一個元素作為主元。這樣在數組已經有序的情況下,每次劃分將得到最壞的結果。一種比較常見的優化方法是隨機化演算法,即隨機選取一個元素作為主元。這種情況下雖然最壞情況仍然是O(n^2),但最壞情況不再依賴於輸入數據,而是由於隨機函數取值不佳。實際上,隨機化快速排序得到理論最壞情況的可能性僅為1/(2^n)。所以隨機化快速排序可以對於絕大多數輸入數據達到O(nlogn)的期望時間復雜度。一位前輩做出了一個精闢的總結:「隨機化快速排序可以滿足一個人一輩子的人品需求。」
隨機化快速排序的唯一缺點在於,一旦輸入數據中有很多的相同數據,隨機化的效果將直接減弱。對於極限情況,即對於n個相同的數排序,隨機化快速排序的時間復雜度將毫無疑問的降低到O(n^2)。解決方法是用一種方法進行掃描,使沒有交換的情況下主元保留在原位置。 QUICKSORT(A,p,r)
1if p<r
2then q ←PARTITION(A,p,r)
3QUICKSORT(A,p,q-1)
4QUICKSORT(A,q+1,r)
為排序一個完整的數組A,最初的調用是QUICKSORT(A,1,length[A])。
快速排序演算法的關鍵是PARTITION過程,它對子數組A[p..r]進行就地重排:
PARTITION(A,p,r)
1x←A[r]
2i←p-1
3for j←p to r-1
4do if A[j]≤x
5then i←i+1
6exchange A[i]←→A[j]
7exchange A[i+1]←→A[r]
8return i+1 對PARTITION和QUICKSORT所作的改動比較小。在新的劃分過程中,我們在真正進行劃分之前實現交換:
(其中PARTITION過程同快速排序偽代碼(非隨機))
RANDOMIZED-PARTITION(A,p,r)
1i← RANDOM(p,r)
2exchange A[r]←→A[i]
3return PARTITION(A,p,r)
新的快速排序過程不再調用PARTITION,而是調用RANDOMIZED-PARTITION。
RANDOMIZED-QUICKSORT(A,p,r)
1if p<r
2then q← RANDOMIZED-PARTITION(A,p,r)
3RANDOMIZED-QUICKSORT(A,p,q-1)
4RANDOMIZED-QUICKSORT(A,q+1,r) 這里為方便起見,我們假設演算法Quick_Sort的范圍閾值為1(即一直將線性表分解到只剩一個元素),這對該演算法復雜性的分析沒有本質的影響。
我們先分析函數partition的性能,該函數對於確定的輸入復雜性是確定的。觀察該函數,我們發現,對於有n個元素的確定輸入L[p..r],該函數運行時間顯然為θ(n)。
最壞情況
無論適用哪一種方法來選擇pivot,由於我們不知道各個元素間的相對大小關系(若知道就已經排好序了),所以我們無法確定pivot的選擇對劃分造成的影響。因此對各種pivot選擇法而言,最壞情況和最好情況都是相同的。
我們從直覺上可以判斷出最壞情況發生在每次劃分過程產生的兩個區間分別包含n-1個元素和1個元素的時候(設輸入的表有n個元素)。下面我們暫時認為該猜測正確,在後文我們再詳細證明該猜測。
對於有n個元素的表L[p..r],由於函數Partition的計算時間為θ(n),所以快速排序在序壞情況下的復雜性有遞歸式如下:
T(1)=θ(1),T(n)=T(n-1)+T(1)+θ(n) (1)
用迭代法可以解出上式的解為T(n)=θ(n2)。
這個最壞情況運行時間與插入排序是一樣的。
下面我們來證明這種每次劃分過程產生的兩個區間分別包含n-1個元素和1個元素的情況就是最壞情況。
設T(n)是過程Quick_Sort作用於規模為n的輸入上的最壞情況的時間,則
T(n)=max(T(q)+T(n-q))+θ(n),其中1≤q≤n-1 (2)
我們假設對於任何k<n,總有T(k)≤ck,其中c為常數;顯然當k=1時是成立的。
將歸納假設代入(2),得到:
T(n)≤max(cq2+c(n-q)2)+θ(n)=c*max(q2+(n-q)2)+θ(n)
因為在[1,n-1]上q2+(n-q)2關於q遞減,所以當q=1時q2+(n-q)2有最大值n2-2(n-1)。於是有:
T(n)≤cn2-2c(n-1)+θ(n)≤cn2
只要c足夠大,上面的第二個小於等於號就可以成立。於是對於所有的n都有T(n)≤cn。
這樣,排序演算法的最壞情況運行時間為θ(n2),且最壞情況發生在每次劃分過程產生的兩個區間分別包含n-1個元素和1個元素的時候。
時間復雜度為o(n2)。
最好情況
如果每次劃分過程產生的區間大小都為n/2,則快速排序法運行就快得多了。這時有:
T(n)=2T(n/2)+θ(n),T(1)=θ(1) (3)
解得:T(n)=θ(nlogn)
快速排序法最佳情況下執行過程的遞歸樹如下圖所示,圖中lgn表示以10為底的對數,而本文中用logn表示以2為底的對數.
由於快速排序法也是基於比較的排序法,其運行時間為Ω(nlogn),所以如果每次劃分過程產生的區間大小都為n/2,則運行時間θ(nlogn)就是最好情況運行時間。
但是,是否一定要每次平均劃分才能達到最好情況呢?要理解這一點就必須理解對稱性是如何在描述運行時間的遞歸式中反映的。我們假設每次劃分過程都產生9:1的劃分,乍一看該劃分很不對稱。我們可以得到遞歸式:
T(n)=T(n/10)+T(9n/10)+θ(n),T(1)=θ(1) (4)
請注意樹的每一層都有代價n,直到在深度log10n=θ(logn)處達到邊界條件,以後各層代價至多為n。遞歸於深度log10/9n=θ(logn)處結束。這樣,快速排序的總時間代價為T(n)=θ(nlogn),從漸進意義上看就和劃分是在中間進行的一樣。事實上,即使是99:1的劃分時間代價也為θ(nlogn)。其原因在於,任何一種按常數比例進行劃分所產生的遞歸樹的深度都為θ(nlogn),其中每一層的代價為O(n),因而不管常數比例是什麼,總的運行時間都為θ(nlogn),只不過其中隱含的常數因子有所不同。(關於演算法復雜性的漸進階,請參閱演算法的復雜性)
平均情況
快速排序的平均運行時間為θ(nlogn)。
我們對平均情況下的性能作直覺上的分析。
要想對快速排序的平均情況有個較為清楚的概念,我們就要對遇到的各種輸入作個假設。通常都假設輸入數據的所有排列都是等可能的。後文中我們要討論這個假設。
當我們對一個隨機的輸入數組應用快速排序時,要想在每一層上都有同樣的劃分是不太可能的。我們所能期望的是某些劃分較對稱,另一些則很不對稱。事實上,我們可以證明,如果選擇L[p..r]的第一個元素作為支點元素,Partition所產生的劃分80%以上都比9:1更對稱,而另20%則比9:1差,這里證明從略。
平均情況下,Partition產生的劃分中既有「好的」,又有「差的」。這時,與Partition執行過程對應的遞歸樹中,好、差劃分是隨機地分布在樹的各層上的。為與我們的直覺相一致,假設好、差劃分交替出現在樹的各層上,且好的劃分是最佳情況劃分,而差的劃分是最壞情況下的劃分。在根節點處,劃分的代價為n,劃分出來的兩個子表的大小為n-1和1,即最壞情況。在根的下一層,大小為n-1的子表按最佳情況劃分成大小各為(n-1)/2的兩個子表。這兒我們假設含1個元素的子表的邊界條件代價為1。
在一個差的劃分後接一個好的劃分後,產生出三個子表,大小各為1,(n-1)/2和(n-1)/2,代價共為2n-1=θ(n)。一層劃分就產生出大小為(n-1)/2+1和(n-1)/2的兩個子表,代價為n=θ(n)。這種劃分差不多是完全對稱的,比9:1的劃分要好。從直覺上看,差的劃分的代價θ(n)可被吸收到好的劃分的代價θ(n)中去,結果是一個好的劃分。這樣,當好、差劃分交替分布劃分都是好的一樣:仍是θ(nlogn),但θ記號中隱含的常數因子要略大一些。關於平均情況的嚴格分析將在後文給出。
在前文從直覺上探討快速排序的平均性態過程中,我們已假定輸入數據的所有排列都是等可能的。如果輸入的分布滿足這個假設時,快速排序是對足夠大的輸入的理想選擇。但在實際應用中,這個假設就不會總是成立。
解決的方法是,利用隨機化策略,能夠克服分布的等可能性假設所帶來的問題。
一種隨機化策略是:與對輸入的分布作「假設」不同的是對輸入的分布作「規定」。具體地說,在排序輸入的線性表前,對其元素加以隨機排列,以強制的方法使每種排列滿足等可能性。事實上,我們可以找到一個能在O(n)時間內對含n個元素的數組加以隨機排列的演算法。這種修改不改變演算法的最壞情況運行時間,但它卻使得運行時間能夠獨立於輸入數據已排序的情況。
另一種隨機化策略是:利用前文介紹的選擇支點元素pivot的第四種方法,即隨機地在L[p..r]中選擇一個元素作為支點元素pivot。實際應用中通常採用這種方法。
快速排序的隨機化版本有一個和其他隨機化演算法一樣的有趣性質:沒有一個特別的輸入會導致最壞情況性態。這種演算法的最壞情況性態是由隨機數產生器決定的。你即使有意給出一個壞的輸入也沒用,因為隨機化排列會使得輸入數據的次序對演算法不產生影響。只有在隨機數產生器給出了一個很不巧的排列時,隨機化演算法的最壞情況性態才會出現。事實上可以證明幾乎所有的排列都可使快速排序接近平均情況性態,只有非常少的幾個排列才會導致演算法的近最壞情況性態。
一般來說,當一個演算法可按多條路子做下去,但又很難決定哪一條保證是好的選擇時,隨機化策略是很有用的。如果大部分選擇都是好的,則隨機地選一個就行了。通常,一個演算法在其執行過程中要做很多選擇。如果一個好的選擇的獲益大於壞的選擇的代價,那麼隨機地做一個選擇就能得到一個很有效的演算法。我們在前文已經了解到,對快速排序來說,一組好壞相雜的劃分仍能產生很好的運行時間 。因此我們可以認為該演算法的隨機化版本也能具有較好的性態。
B. 用C語言編程實現下列演算法!謝謝!
NOIP(全國信息學奧林匹克聯賽)1997
普及組
二、把1,2,…
9共9個數排成下列形狀的三角形:(30%)
a
b
c
d
e
f
g
h
i
其中:a~i分別表示1,2,...9中的一個數字,並要求同時滿足下列條件:
(1)
a<f<i
(2)b<d,
g<h,
c<e;
(3)a+b+d+f=
f+g+h+i=
i+e+c+a=
P
程序要求:根據輸入的邊長之和P,輸出所有滿足上述條件的三角形的個數及其中的一
種方案。
在演算法描述中,如果隊循環變數的初值和終值精心設置,是可以體現出變數間規定的一些大小關系的,這樣做可以減少IF語句,減少運行時間。
參考代碼:
#include<iostream>
using
namespace
std;
int
main()
{
bool
z[10]={};
int
a,b,c,d,e,f,g,h,i,p,s=0,x,y;
cin>>p;
for(a=1;a<8;z[a++]=false)
{
z[a]=true;
y=p-5-a<8?p-a-5:8;
for(f=a+1;f<=y;f++)
{
z[f]=true;
x=p-f-3<9?p-f-3:9;
for(i=f+1;i<=x;i++)
{
z[i]=true;
for(b=1;b<=(p-a-f-1)/2;b++)
{
d=p-a-f-b;
if(z[b]||d>9||z[d])continue;
z[b]=z[d]=true;
for(c=1;c<=(p-i-a-1)/2;c++)
{
e=p-a-c-i;
if(z[c]||e>9||z[e])continue;
z[c]=z[e]=true;
for(g=1;g<=(p-f-i-1)/2;g++)
{
h=p-f-g-i;
if(z[g]||h>9||z[h])continue;
if(s++==0)cout<<a<<endl<<b<<c<<endl<<p-a-f-b<<p-a-c-i<<endl<<f<<g<<p-f-i-g<<i<<endl;
}
z[c]=z[e]=false;
}
z[b]=z[d]=false;
}
z[i]=0;
}
z[f]=0;
}
z[a]=0;
}
cout<<s<<endl;
return
0;
}
C. c語言經典程序演算法
經典C源程序100例
【程序1】
題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少?
1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列後再去
掉不滿足條件的排列。
2.程序源代碼:
main()
{
int i,j,k;
printf("\n");
for(i=1;i<5;i++) /*以下為三重循環*/
for(j=1;j<5;j++)
for (k=1;k<5;k++)
{
if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/
printf("%d,%d,%d\n",i,j,k);
}
}
==============================================================
【程序2】
題目:企業發放的獎金根據利潤提成。利潤(I)低於或等於10萬元時,獎金可提10%;利潤高
於10萬元,低於20萬元時,低於10萬元的部分按10%提成,高於10萬元的部分,可可提
成7.5%;20萬到40萬之間時,高於20萬元的部分,可提成5%;40萬到60萬之間時高於
40萬元的部分,可提成3%;60萬到100萬之間時,高於60萬元的部分,可提成1.5%,高於
100萬元時,超過100萬元的部分按1%提成,從鍵盤輸入當月利潤I,求應發放獎金總數?
1.程序分析:請利用數軸來分界,定位。注意定義時需把獎金定義成長整型。
2.程序源代碼:
main()
{
long int i;
int bonus1,bonus2,bonus4,bonus6,bonus10,bonus;
scanf("%ld",&i);
bonus1=100000*0.1;bonus2=bonus1+100000*0.75;
bonus4=bonus2+200000*0.5;
bonus6=bonus4+200000*0.3;
bonus10=bonus6+400000*0.15;
if(i<=100000)
bonus=i*0.1;
else if(i<=200000)
bonus=bonus1+(i-100000)*0.075;
else if(i<=400000)
bonus=bonus2+(i-200000)*0.05;
else if(i<=600000)
bonus=bonus4+(i-400000)*0.03;
else if(i<=1000000)
bonus=bonus6+(i-600000)*0.015;
else
bonus=bonus10+(i-1000000)*0.01;
printf("bonus=%d",bonus);
}
==============================================================
【程序3】
題目:一個整數,它加上100後是一個完全平方數,再加上168又是一個完全平方數,請問該數是多少?
1.程序分析:在10萬以內判斷,先將該數加上100後再開方,再將該數加上268後再開方,如果開方後
的結果滿足如下條件,即是結果。請看具體分析:
2.程序源代碼:
#include "math.h"
main()
{
long int i,x,y,z;
for (i=1;i<100000;i++)
{ x=sqrt(i+100); /*x為加上100後開方後的結果*/
y=sqrt(i+268); /*y為再加上168後開方後的結果*/
if(x*x==i+100&&y*y==i+268)/*如果一個數的平方根的平方等於該數,這說明此數是完全平方數*/
printf("\n%ld\n",i);
}
}
==============================================================
【程序4】
題目:輸入某年某月某日,判斷這一天是這一年的第幾天?
1.程序分析:以3月5日為例,應該先把前兩個月的加起來,然後再加上5天即本年的第幾天,特殊
情況,閏年且輸入月份大於3時需考慮多加一天。
2.程序源代碼:
main()
{
int day,month,year,sum,leap;
printf("\nplease input year,month,day\n");
scanf("%d,%d,%d",&year,&month,&day);
switch(month)/*先計算某月以前月份的總天數*/
{
case 1:sum=0;break;
case 2:sum=31;break;
case 3:sum=59;break;
case 4:sum=90;break;
case 5:sum=120;break;
case 6:sum=151;break;
case 7:sum=181;break;
case 8:sum=212;break;
case 9:sum=243;break;
作者: zhlei81 2005-1-22 11:29 回復此發言
--------------------------------------------------------------------------------
2 經典C源程序100例
case 10:sum=273;break;
case 11:sum=304;break;
case 12:sum=334;break;
default:printf("data error");break;
}
sum=sum+day; /*再加上某天的天數*/
if(year%400==0||(year%4==0&&year%100!=0))/*判斷是不是閏年*/
leap=1;
else
leap=0;
if(leap==1&&month>2)/*如果是閏年且月份大於2,總天數應該加一天*/
sum++;
printf("It is the %dth day.",sum);}
==============================================================
【程序5】
題目:輸入三個整數x,y,z,請把這三個數由小到大輸出。
1.程序分析:我們想辦法把最小的數放到x上,先將x與y進行比較,如果x>y則將x與y的值進行交換,
然後再用x與z進行比較,如果x>z則將x與z的值進行交換,這樣能使x最小。
2.程序源代碼:
main()
{
int x,y,z,t;
scanf("%d%d%d",&x,&y,&z);
if (x>y)
{t=x;x=y;y=t;} /*交換x,y的值*/
if(x>z)
{t=z;z=x;x=t;}/*交換x,z的值*/
if(y>z)
{t=y;y=z;z=t;}/*交換z,y的值*/
printf("small to big: %d %d %d\n",x,y,z);
}
==============================================================
【程序6】
題目:用*號輸出字母C的圖案。
1.程序分析:可先用'*'號在紙上寫出字母C,再分行輸出。
2.程序源代碼:
#include "stdio.h"
main()
{
printf("Hello C-world!\n");
printf(" ****\n");
printf(" *\n");
printf(" * \n");
printf(" ****\n");
}
==============================================================
【程序7】
題目:輸出特殊圖案,請在c環境中運行,看一看,Very Beautiful!
1.程序分析:字元共有256個。不同字元,圖形不一樣。
2.程序源代碼:
#include "stdio.h"
main()
{
char a=176,b=219;
printf("%c%c%c%c%c\n",b,a,a,a,b);
printf("%c%c%c%c%c\n",a,b,a,b,a);
printf("%c%c%c%c%c\n",a,a,b,a,a);
printf("%c%c%c%c%c\n",a,b,a,b,a);
printf("%c%c%c%c%c\n",b,a,a,a,b);}
==============================================================
【程序8】
題目:輸出9*9口訣。
1.程序分析:分行與列考慮,共9行9列,i控制行,j控制列。
2.程序源代碼:
#include "stdio.h"
main()
{
int i,j,result;
printf("\n");
for (i=1;i<10;i++)
{ for(j=1;j<10;j++)
{
result=i*j;
printf("%d*%d=%-3d",i,j,result);/*-3d表示左對齊,佔3位*/
}
printf("\n");/*每一行後換行*/
}
}
==============================================================
【程序9】
題目:要求輸出國際象棋棋盤。
1.程序分析:用i控制行,j來控制列,根據i+j的和的變化來控制輸出黑方格,還是白方格。
2.程序源代碼:
#include "stdio.h"
main()
{
int i,j;
for(i=0;i<8;i++)
{
for(j=0;j<8;j++)
if((i+j)%2==0)
printf("%c%c",219,219);
else
printf(" ");
printf("\n");
}
}
==============================================================
【程序10】
題目:列印樓梯,同時在樓梯上方列印兩個笑臉。
1.程序分析:用i控制行,j來控制列,j根據i的變化來控制輸出黑方格的個數。
2.程序源代碼:
#include "stdio.h"
main()
{
int i,j;
printf("\1\1\n");/*輸出兩個笑臉*/
for(i=1;i<11;i++)
{
for(j=1;j<=i;j++)
printf("%c%c",219,219);
printf("\n");
}
}
作者: zhlei81 2005-1-22 11:29 回復此發言
--------------------------------------------------------------------------------
3 回復:經典C源程序100例
【程序11】
題目:古典問題:有一對兔子,從出生後第3個月起每個月都生一對兔子,小兔子長到第三個月
後每個月又生一對兔子,假如兔子都不死,問每個月的兔子總數為多少?
1.程序分析: 兔子的規律為數列1,1,2,3,5,8,13,21....
2.程序源代碼:
main()
{
long f1,f2;
int i;
f1=f2=1;
for(i=1;i<=20;i++)
{ printf("%12ld %12ld",f1,f2);
if(i%2==0) printf("\n");/*控制輸出,每行四個*/
f1=f1+f2; /*前兩個月加起來賦值給第三個月*/
f2=f1+f2; /*前兩個月加起來賦值給第三個月*/
}
}
==============================================================
【程序12】
題目:判斷101-200之間有多少個素數,並輸出所有素數。
1.程序分析:判斷素數的方法:用一個數分別去除2到sqrt(這個數),如果能被整除,
則表明此數不是素數,反之是素數。
2.程序源代碼:
#include "math.h"
main()
{
int m,i,k,h=0,leap=1;
printf("\n");
for(m=101;m<=200;m++)
{ k=sqrt(m+1);
for(i=2;i<=k;i++)
if(m%i==0)
{leap=0;break;}
if(leap) {printf("%-4d",m);h++;
if(h%10==0)
printf("\n");
}
leap=1;
}
printf("\nThe total is %d",h);
}
==============================================================
【程序13】
題目:列印出所有的「水仙花數」,所謂「水仙花數」是指一個三位數,其各位數字立方和等於該數
本身。例如:153是一個「水仙花數」,因為153=1的三次方+5的三次方+3的三次方。
1.程序分析:利用for循環控制100-999個數,每個數分解出個位,十位,百位。
2.程序源代碼:
main()
{
int i,j,k,n;
printf("'water flower'number is:");
for(n=100;n<1000;n++)
{
i=n/100;/*分解出百位*/
j=n/10%10;/*分解出十位*/
k=n%10;/*分解出個位*/
if(i*100+j*10+k==i*i*i+j*j*j+k*k*k)
{
printf("%-5d",n);
}
}
printf("\n");
}
==============================================================
【程序14】
題目:將一個正整數分解質因數。例如:輸入90,列印出90=2*3*3*5。
程序分析:對n進行分解質因數,應先找到一個最小的質數k,然後按下述步驟完成:
(1)如果這個質數恰等於n,則說明分解質因數的過程已經結束,列印出即可。
(2)如果n<>k,但n能被k整除,則應列印出k的值,並用n除以k的商,作為新的正整數你n,
重復執行第一步。
(3)如果n不能被k整除,則用k+1作為k的值,重復執行第一步。
2.程序源代碼:
/* zheng int is divided yinshu*/
main()
{
int n,i;
printf("\nplease input a number:\n");
scanf("%d",&n);
printf("%d=",n);
for(i=2;i<=n;i++)
{
while(n!=i)
{
if(n%i==0)
{ printf("%d*",i);
n=n/i;
}
else
break;
}
}
printf("%d",n);}
==============================================================
【程序15】
題目:利用條件運算符的嵌套來完成此題:學習成績>=90分的同學用A表示,60-89分之間的用B表示,
60分以下的用C表示。
1.程序分析:(a>b)?a:b這是條件運算符的基本例子。
2.程序源代碼:
main()
{
int score;
char grade;
printf("please input a score\n");
scanf("%d",&score);
grade=score>=90?'A':(score>=60?'B':'C');
printf("%d belongs to %c",score,grade);
}
==============================================================
【程序16】
題目:輸入兩個正整數m和n,求其最大公約數和最小公倍數。
作者: zhlei81 2005-1-22 11:30 回復此發言
--------------------------------------------------------------------------------
4 回復:經典C源程序100例
1.程序分析:利用輾除法。
2.程序源代碼:
main()
{
int a,b,num1,num2,temp;
printf("please input two numbers:\n");
scanf("%d,%d",&num1,&num2);
if(num1 { temp=num1;
num1=num2;
num2=temp;
}
a=num1;b=num2;
while(b!=0)/*利用輾除法,直到b為0為止*/
{
temp=a%b;
a=b;
b=temp;
}
printf("gongyueshu:%d\n",a);
printf("gongbeishu:%d\n",num1*num2/a);
}
==============================================================
【程序17】
題目:輸入一行字元,分別統計出其中英文字母、空格、數字和其它字元的個數。
1.程序分析:利用while語句,條件為輸入的字元不為'\n'.
2.程序源代碼:
#include "stdio.h"
main()
{char c;
int letters=0,space=0,digit=0,others=0;
printf("please input some characters\n");
while((c=getchar())!='\n')
{
if(c>='a'&&c<='z'||c>='A'&&c<='Z')
letters++;
else if(c==' ')
space++;
else if(c>='0'&&c<='9')
digit++;
else
others++;
}
printf("all in all:char=%d space=%d digit=%d others=%d\n",letters,
space,digit,others);
}
==============================================================
【程序18】
題目:求s=a+aa+aaa+aaaa+aa...a的值,其中a是一個數字。例如2+22+222+2222+22222(此時
共有5個數相加),幾個數相加有鍵盤控制。
1.程序分析:關鍵是計算出每一項的值。
2.程序源代碼:
main()
{
int a,n,count=1;
long int sn=0,tn=0;
printf("please input a and n\n");
scanf("%d,%d",&a,&n);
printf("a=%d,n=%d\n",a,n);
while(count<=n)
{
tn=tn+a;
sn=sn+tn;
a=a*10;
++count;
}
printf("a+aa+...=%ld\n",sn);
}
==============================================================
【程序19】
題目:一個數如果恰好等於它的因子之和,這個數就稱為「完數」。例如6=1+2+3.編程
找出1000以內的所有完數。
1. 程序分析:請參照程序<--上頁程序14.
2.程序源代碼:
main()
{
static int k[10];
int i,j,n,s;
for(j=2;j<1000;j++)
{
n=-1;
s=j;
for(i=1;i {
if((j%i)==0)
{ n++;
s=s-i;
k[n]=i;
}
}
if(s==0)
{
printf("%d is a wanshu",j);
for(i=0;i printf("%d,",k[i]);
printf("%d\n",k[n]);
}
}
}
==============================================================
【程序20】
題目:一球從100米高度自由落下,每次落地後反跳回原高度的一半;再落下,求它在
第10次落地時,共經過多少米?第10次反彈多高?
1.程序分析:見下面注釋
2.程序源代碼:
main()
{
float sn=100.0,hn=sn/2;
int n;
for(n=2;n<=10;n++)
{
sn=sn+2*hn;/*第n次落地時共經過的米數*/
hn=hn/2; /*第n次反跳高度*/
}
printf("the total of road is %f\n",sn);
printf("the tenth is %f meter\n",hn);
}
作者: zhlei81 2005-1-22 11:30 回復此發言
--------------------------------------------------------------------------------
D. 用C語言寫一個加法運算的代碼怎麼寫
例子如下:
知識擴展:
C語言是一門通用計算機編程語言,應用廣泛。C語言的設計目標是提供一種能以簡易的方式編譯、處理低級存儲器、產生少量的機器碼以及不需要任何運行環境支持便能運行的編程語言。
盡管C語言提供了許多低級處理的功能,但仍然保持著良好跨平台的特性,以一個標准規格寫出的C語言程序可在許多電腦平台上進行編譯,甚至包含一些嵌入式處理器(單片機或稱MCU)以及超級電腦等作業平台。
C語言屬於高級程序語言的一種,它的前身是「ALGOL」。其創始人是布朗·W·卡尼漢和丹尼斯·M·利奇。C語言問世時是帶有很大的局限性,因為它只能用於UNIX系統上。然而隨著科學技術的進步,計算機工業的發展,C語言逐漸脫離UNIX。1987年美國標准化協會制定了C語言的國際標准,簡稱「ANSI C」,從此以後它便成為一種廣泛使用的程序語言。
E. 演算法編程:用c語言實現
解決這類問題可以使用 回溯 演算法,代碼如下:
#include<stdio.h>
#include<stdlib.h>
#defineM6//候選數字個數
#defineN5//組合後數字位數
intcheck(intresult[],inti)
{
for(intj=0;j<N;j++)
if(result[j]==i)
return0;
return1;
}
intlist(intnumbers[],intl,intresult[],intcount)
{
if(l>=N){
//將各位數組合成一個數
intnum=0;
for(inti=0;i<N;i++){
num=num*10+numbers[result[i]];
}
//判斷這個數是否能被75整除
if(num%75==0){
printf("%d ",num);
count++;
}
returncount;
}
for(inti=0;i<M;i++){
if(!check(result,i)){
continue;
}
result[l]=i;
count=list(numbers,l+1,result,count);
result[l]=-1;
}
returncount;
}
intmain()
{
intnumbers[M]={1,2,5,7,8,9};
intresult[N]={-1,-1,-1,-1,-1};
intcount=list(numbers,0,result,0);
printf("共有%d個 ",count);
system("pause");
return0;
}
運行結果:
F. 貪婪演算法幾個經典例子
問題一:貪心演算法的例題分析 例題1、[0-1背包問題]有一個背包,背包容量是M=150。有7個物品,物品不可以分割成任意大小。要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。物品 A B C D E F G重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg價值 10$ 40$ 30$ 50$ 35$ 40$ 30$分析:目標函數:∑pi最大約束條件是裝入的物品總重量不超過背包容量:∑wi 64輸出一個解,返回上一步驟c--(x,y) ← c計算(x,y)的八個方位的子結點,選出那些可行的子結點循環遍歷所有可行子結點,步驟c++重復2顯然⑵是一個遞歸調用的過程,大致如下:C++程序: #define N 8void dfs(int x,int y,int count){ int i,tx,ty; if(count>N*N) { output_solution();輸出一個解 return; } for(i=0; i>
問題二:收集各類貪心演算法(C語言編程)經典題目 tieba./...&tb=on網路的C語言貼吧。 全都是關於C的東西。
問題三:幾種經典演算法回顧 今天無意中從箱子里發現了大學時學演算法的教材《演算法設計與分析》,雖然工作這么幾年沒在什麼地方用過演算法,但演算法的思想還是影響深刻的,可以在系統設計時提供一些思路。大致翻了翻,重溫了一下幾種幾種經典的演算法,做一下小結。分治法動態規劃貪心演算法回溯法分支限界法分治法1)基本思想將一個問題分解為多個規模較小的子問題,這些子問題互相獨立並與原問題解決方法相同。遞歸解這些子問題,然後將這各子問題的解合並得到原問題的解。2)適用問題的特徵該問題的規模縮小到一定的程度就可以容易地解決該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子問題3)關鍵如何將問題分解為規模較小並且解決方法相同的問題分解的粒度4)步驟分解->遞歸求解->合並 divide-and-conquer(P) { if ( | P | >
問題四:求三四個貪心演算法的例題(配源程序代碼,要帶說明解釋的)!非常感謝 貪心演算法的名詞解釋
ke./view/298415
第一個貪心演算法 (最小生成樹)
ke./view/288214
第二個貪心演算法 (Prim演算法)
ke./view/671819
第三個貪心演算法 (kruskal演算法)
ke./view/247951
演算法都有詳細解釋的
問題五:求 Java 一些經典例子演算法 前n項階乘分之一的和
public class jiecheng {
public static void main(String[] args)
{
double sum=0;
double j=1;
int n=10;
for(int i=1;i 問題六:關於編程的貪心法 定義
所謂貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的僅是在某種意義上的局部最優解。 貪心演算法不是對所有問題都能得到整體最優解,但對范圍相當廣泛的許多問題他能產生整體最優解或者是整體最優解的近似解。
[編輯本段]貪心演算法的基本思路
1.建立數學模型來描述問題。 2.把求解的問題分成若干個子問題。 3.對每一子問題求解,得到子問題的局部最優解。 4.把子問題的解局部最優解合成原來解問題的一個解。 實現該演算法的過程: 從問題的某一初始解出發; while 能朝給定總目標前進一步 do 求出可行解的一個解元素; 由所有解元素組合成問題的一個可行解。 下面是一個可以試用貪心演算法解的題目,貪心解的確不錯,可惜不是最優解。
[編輯本段]例題分析
[背包問題]有一個背包,背包容量是M=150。有7個物品,物品不可以分割成任意大小。 要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。 物品 A B C D E F G 重量 35 30 60 50 40 10 25 價值 10 40 30 50 35 40 30 分析: 目標函數: ∑pi最大 約束條件是裝入的物品總重量不超過背包容量:∑wi>
問題七:求解一貪心演算法問題 最快回答那個不懂別亂說,別誤人子弟。
這題標準的貪心演算法,甚至很多時候被當做貪心例題
要求平均等待時間,那麼就得用 總等待時間 / 人數
所以只用關心總等待時間,
如果數據大的在前面,那麼後面必然都要加一次這個時間,所以按從小到大排。
給你寫了個,自己看吧。
#include stdafx.h
#include
#include
#include
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
int n;
float arr[105];
cin >> n;
for(int i = 0; i > arr[i];
sort(arr, arr+n);
int tnow = 0;
int tmax = 0;
for(int i = 0; i 問題八:分治演算法的應用實例 下面通過實例加以說明: 給你一個裝有1 6個硬幣的袋子。1 6個硬幣中有一個是偽造的,並且那個偽造的硬幣比真的硬幣要輕一些。你的任務是找出這個偽造的硬幣。為了幫助你完成這一任務,將提供一台可用來比較兩組硬幣重量的儀器,利用這台儀器,可以知道兩組硬幣的重量是否相同。比較硬幣1與硬幣2的重量。假如硬幣1比硬幣2輕,則硬幣1是偽造的;假如硬幣2比硬幣1輕,則硬幣2是偽造的。這樣就完成了任務。假如兩硬幣重量相等,則比較硬幣3和硬幣4。同樣,假如有一個硬幣輕一些,則尋找偽幣的任務完成。假如兩硬幣重量相等,則繼續比較硬幣5和硬幣6。按照這種方式,可以最多通過8次比較來判斷偽幣的存在並找出這一偽幣。另外一種方法就是利用分而治之方法。假如把1 6硬幣的例子看成一個大的問題。第一步,把這一問題分成兩個小問題。隨機選擇8個硬幣作為第一組稱為A組,剩下的8個硬幣作為第二組稱為B組。這樣,就把1 6個硬幣的問題分成兩個8硬幣的問題來解決。第二步,判斷A和B組中是否有偽幣。可以利用儀器來比較A組硬幣和B組硬幣的重量。假如兩組硬幣重量相等,則可以判斷偽幣不存在。假如兩組硬幣重量不相等,則存在偽幣,並且可以判斷它位於較輕的那一組硬幣中。最後,在第三步中,用第二步的結果得出原先1 6個硬幣問題的答案。若僅僅判斷硬幣是否存在,則第三步非常簡單。無論A組還是B組中有偽幣,都可以推斷這1 6個硬幣中存在偽幣。因此,僅僅通過一次重量的比較,就可以判斷偽幣是否存在。假設需要識別出這一偽幣。把兩個或三個硬幣的情況作為不可再分的小問題。注意如果只有一個硬幣,那麼不能判斷出它是否就是偽幣。在一個小問題中,通過將一個硬幣分別與其他兩個硬幣比較,最多比較兩次就可以找到偽幣。這樣,1 6硬幣的問題就被分為兩個8硬幣(A組和B組)的問題。通過比較這兩組硬幣的重量,可以判斷偽幣是否存在。如果沒有偽幣,則演算法終止。否則,繼續劃分這兩組硬幣來尋找偽幣。假設B是輕的那一組,因此再把它分成兩組,每組有4個硬幣。稱其中一組為B1,另一組為B2。比較這兩組,肯定有一組輕一些。如果B1輕,則偽幣在B1中,再將B1又分成兩組,每組有兩個硬幣,稱其中一組為B1a,另一組為B1b。比較這兩組,可以得到一個較輕的組。由於這個組只有兩個硬幣,因此不必再細分。比較組中兩個硬幣的重量,可以立即知道哪一個硬幣輕一些。較輕的硬幣就是所要找的偽幣。 在n個元素中找出最大元素和最小元素。我們可以把這n個元素放在一個數組中,用直接比較法求出。演算法如下:void maxmin1(int A[],int n,int *max,int *min){ int i;*min=*max=A[0];for(i=0;i *max) *max= A[i];if(A[i] >
問題九:回溯演算法的典型例題 八皇後問題:在8×8格的國際象棋上擺放八個皇後,使其不能互相攻擊,即任意兩個皇後都不能處於同一行、同一列或同一斜線上,問有多少種擺法。
問題十:什麼是演算法,都什麼,舉個例子,謝謝 演算法就是解決問題的具體的方法和步驟,所以具有以下性質:
1、有窮性: 一個演算法必須保證執行有限步之後結束(如果步驟無限,問題就無法解決)
2、確切性:步驟必須明確,說清楚做什麼。
3、輸入:即解決問題前我們所掌握的條件。
4、輸出:輸出即我們需要得到的答案。
5、可行性:邏輯不能錯誤,步驟必須有限,必須得到結果。
演算法通俗的講:就是解決問題的方法和步驟。在計算機發明之前便已經存在。只不過在計算機發明後,其應用變得更為廣泛。通過簡單的演算法,利用電腦的計算速度,可以讓問題變得簡單。