⑴ 幾種常見的查找演算法之比較
二分法平均查找效率是O(logn),但是需要數組是排序的。如果沒有排過序,就只好先用O(nlogn)的預處理為它排個序了。而且它的插入比較困難,經常需要移動整個數組,所以動態的情況下比較慢。
哈希查找理想的插入和查找效率是O(1),但條件是需要找到一個良好的散列函數,使得分配較為平均。另外,哈希表需要較大的空間,至少要比O(n)大幾倍,否則產生沖突的概率很高。
二叉排序樹查找也是O(logn)的,關鍵是插入值時需要做一些處理使得它較為平衡(否則容易出現輕重的不平衡,查找效率最壞會降到O(n)),而且寫起來稍微麻煩一些,具體的演算法你可以隨便找一本介紹數據結構的書看看。當然,如果你用的是c語言,直接利用它的庫類型map、multimap就可以了,它是用紅黑樹實現的,理論上插入、查找時間都是O(logn),很方便,不過一般會比自己實現的二叉平衡樹稍微慢一些。
⑵ 演算法的時間復雜度是指什麼
演算法的時間復雜度是指該演算法舉虛枯所需要的計算工作量隨問題規模增加而增加的趨勢,也就是演算法的運行時間與問題規模之間的關系。
1、演算法時間復雜度的概念
演算法時間復雜度是指在分析演算法性能時,關注的是該演算法的計算復雜程度。主要是根據演算法中基本操作的執行次數來估算演算法的效率。演算法的時間復雜度在一定程度上衡量了演算法的好壞,是在進行演算法性能分析時的一項基本指標。
2、計算時間復雜度的方法
通過代碼分析可以得出一個演算法的時間復雜度,一般採用大O表示法。大O表示法是一種用於描述演算法復雜度的表示方法。
用一個大O符號加上一個括弧括起來的函數描述演算法復雜度,在大O符號後面的函數里,n表示數據輸入的總量,T(n)表示演算法執行所需的時間復雜度函數。
5、總結:
演算法的時間復雜度是分析演算法效率的一種常用指標,可以通過大O記號表示演算法需要執行的操作次數,常見類型包括常數時間復雜度、線性時間復雜度、對數時間復雜度、平方時間復雜度和指數時間復雜度。
在實際應用中,需要根據具體需求綜合考慮時間復雜度和空間復雜度。
⑶ 演算法的時間復雜度是指什麼
就是對演算法執行時所花時間的度量。一般為問題規模的函數。
計算機科學中,演算法的時間復雜度是一個函數,它定量描述了該演算法的運行時間。這是一個關於代表演算法輸入值的字元串的長度的函數。時間復雜度常用大O符號表述,不包括這個函數的低階項和首項系數。使用這種方式時,時間復雜度可被稱為是漸近的,它考察當輸入值大小趨近無窮時的情況。
演算法復雜度分為時間復雜度和空間復雜度。其作用: 時間復雜度是指執行演算法所需要的計算工作量;而空間復雜度是指執行這個演算法所需要的內存空間。演算法的復雜性體現在運行該演算法時的計算機所需資源的多少上,計算機資源最重要的是時間和空間資源,因此復雜度分為時間和空間復雜度。
相關內容解釋:
函數在數學上的定義:給定一個非空的數集A,對A施加對應法則f,記作f(A),得到另一數集B,也就是B=f(A)。那麼這個關系式就叫函數關系式,簡稱函數。
簡單來講,對於兩個變數x和y,如果每給定x的一個值,y都有唯一一個確定的值與其對應,那麼我們就說y是x的函數。其中,x叫做自變數,y叫做因變數。