A. 二分搜索演算法是利用什麼實現的演算法
二分搜索演算法是利用排除剩餘元素中一半的元素實現的演算法。
在計算機科學中,二分搜索(英語:binary search),也稱折半搜索(英語:half-interval search)、對數搜索(英語:logarithmic search),是一種在有序數組中查找某一特定元素的搜索演算法。
二分搜索演算法原理:
1、如果待查序列為空,那麼就返回-1,並退出演算法;這表示查找不到目標元素。如果待查序列不為空,則將它的中間元素與要查找的目標元素進行匹配,看它們是否相等。如果相等,則返回該中間元素的索引,並退出演算法;此時就查找成功了。如果不相等,就再比較這兩個元素的大小。
2、如果該中間元素大於目標元素,那麼就將當前序列的前半部分作為新的待查序列;這是因為後半部分的所有元素都大於目標元素,它們全都被排除了。
3、如果該中間元素小於目標元素,那麼就將當前序列的後半部分作為新的待查序列;這是因為前半部分的所有元素都小於目標元素,它們全都被排除了。
B. 二分查找演算法
二分查找演算法,該演算法要求線性表必須採用順序存儲結構,而且表中元素按關鍵字有序排列。如果一個序列是無序的或者是鏈表,那麼該序列就不能使用二分查找。
二分查找演算法原理:若待查序列為空,則返回-1,並退出演算法;若待查序列不為空,則將它的中間元素與目標數值進行比較,判斷是否相等;若相等,則返回中間元素索引,並退出演算法;此時已查找成功。若不相等,則比較中間元素與目標數值的大小。
二分查找的一個技巧是:不要出現else,而是把所有情況用else,if寫清楚,這樣可以清楚地展現所有細節。本文都會使用else,if,旨在講清楚,讀者理解後可自行簡化。
C. 用二分查找演算法查詢某學生成績
/*這是我自己寫的二分查找演算法,用遞歸實現:在已按非降序排序的數組arr[0..length-1]中從位置startPos到endPos查找num這個值,返回值為下標的值,若沒找到則返回-1。*/
int binarySearch(int *arr,int num,int startPos,int endPos)
{
if((startPos >= endPos) && (*(arr+startPos) != num))
{
return -1;
}
else
{
int j = (startPos+endPos)/2;
if(*(arr+j) == num)
{
return j;
}
else
{
if(*(arr+j) > num)
{
return binarySearch(arr,num,startPos,j-1);
}
else
{
return binarySearch(arr,num,j+1,endPos);
}
}
}
}
D. java二分法查找的遞歸演算法怎麼實現
什麼是二分查找?
二分查找也稱折半查找(Binary Search),它是一種效率較高的查找方法。但是,折半查找要求線性表必須採用順序存儲結構,而且表中元素按關鍵字有序排列。
二分查找優缺點
優點是比較次數少,查找速度快,平均性能好;
其缺點是要求待查表為有序表,且插入刪除困難。
因此,折半查找方法適用於不經常變動而查找頻繁的有序列表。
使用條件:查找序列是順序結構,有序。
過程
首先,假設表中元素是按升序排列,將表中間位置記錄的關鍵字與查找關鍵字比較,如果兩者相等,則查找成功;否則利用中間位置記錄將表分成前、後兩個子表,如果中間位置記錄的關鍵字大於查找關鍵字,則進一步查找前一子表,否則進一步查找後一子表。重復以上過程,直到找到滿足條件的記錄,使查找成功,或直到子表不存在為止,此時查找不成功。
利用循環的方式實現二分法查找
public class BinarySearch {
public static void main(String[] args) {
// 生成一個隨機數組 int[] array = suiji();
// 對隨機數組排序 Arrays.sort(array);
System.out.println("產生的隨機數組為: " + Arrays.toString(array));
System.out.println("要進行查找的值: ");
Scanner input = new Scanner(System.in);
// 進行查找的目標值 int aim = input.nextInt();
// 使用二分法查找 int index = binarySearch(array, aim);
System.out.println("查找的值的索引位置: " + index);
}
/** * 生成一個隨機數組 *
* @return 返回值,返回一個隨機數組 */
private static int[] suiji() {
// random.nextInt(n)+m 返回m到m+n-1之間的隨機數 int n = new Random().nextInt(6) + 5;
int[] array = new int[n];
// 循環遍歷為數組賦值 for (int i = 0; i < array.length; i++) {
array[i] = new Random().nextInt(100);
}
return array;
}
/** * 二分法查找 ---循環的方式實現 *
* @param array 要查找的數組 * @param aim 要查找的值 * @return 返回值,成功返回索引,失敗返回-1 */
private static int binarySearch(int[] array, int aim) {
// 數組最小索引值 int left = 0;
// 數組最大索引值 int right = array.length - 1;
int mid;
while (left <= right) {
mid = (left + right) / 2;
// 若查找數值比中間值小,則以整個查找范圍的前半部分作為新的查找范圍 if (aim < array[mid]) {
right = mid - 1;
// 若查找數值比中間值大,則以整個查找范圍的後半部分作為新的查找范圍 } else if (aim > array[mid]) {
left = mid + 1;
// 若查找數據與中間元素值正好相等,則放回中間元素值的索引 } else {
return mid;
}
}
return -1;
}}
運行結果演示:
總結:
遞歸相較於循環,代碼比較簡潔,但是時間和空間消耗比較大,效率低。在實際的學習與工作中,根據情況選擇使用。通常我們如果使用循環實現代碼只要不是太繁瑣都選擇循環的方式實現~
E. 二分查找演算法實現(圖解)與實例
當我們要從一個序列中查找一個元素的時候,二分查找是一種非常快速的查找演算法,二分查找又叫折半查找。
它對要查找的序列有兩個要求,一是該序列必須是有序的(即該序列中的所有元素都是按照大小關系排好序的,升序和降序都可以,本文假設是升序排列的),二是該序列必須是順序存儲的。
如果一個序列是無序的或者是鏈表,那麼該序列就不能進行二分查找。之所以被查找的序列要滿足這樣的條件,是由二分查找演算法的原理決定的。
二分查找又稱折半查找,優點是比較次數少,查找速度快,平均性能好;其缺點是要求待查表為有序表,且插入刪除困難。因此,折半查找方法適用於不經常變動而查找頻繁的有序列表。
二分查找能應用於任何類型的數據,只要能將這些數據按照某種規則進行排序。然而,正因為它依賴於一個有序的集合,這使得它在處理那些頻繁插入和刪除操作的數據集時不太高效。這是因為,對於插入和操作來說,為了保證查找過程正常進行,必須保證數據集始終有序。相對於查找來說,維護一個有序數據集的代價更高。此外,元素必須存儲在連續的空間中。因此,當待搜索的集合是相對靜態的數據集時,此時使用二分查找是最好的選擇。
二分查找演算法的原理如下:
二分查找之所以快速,是因為它在匹配不成功的時候,每次都能排除剩餘元素中一半的元素。因此可能包含目標元素的有效范圍就收縮得很快,而不像順序查找那樣,每次僅能排除一個元素。
二分查找法實質上是不斷地將有序數據集進行對半分割,並檢查每個分區的中間元素。
此實現過程的實施是通過變數left和right控制一個循環來查找元素(其中left和right是正在查找的數據集的兩個邊界值)。
二分查找的時間復雜度取決於查找過程中分區數可能的最大值。對於一個有n個元素的數據集來說,最多可以進行O(㏒₂n)次分區。對於二分查找,這表示最終可能在最壞的情況下執行的檢查的次數:例如,在沒有找到目標時。所以二分查找的時間復雜度為O(㏒₂n)。
參考:
https://www.html.cn/qa/other/23018.html
https://www.cnblogs.com/idreamo/p/9000762.html