導航:首頁 > 源碼編譯 > 合一演算法求非空有限具有相同

合一演算法求非空有限具有相同

發布時間:2023-12-03 00:53:48

❶ 計算機的演算法具有哪些特性

計算機的演算法具有可行性,有窮性、輸入輸出、確定性。

計算機演算法特點

1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。

2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。

3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。

4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。

5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。

拓展資料:

重要演算法

A*搜尋演算法

俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。

Beam Search

束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法。他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。

二分取中查找演算法

一種在有序數組中查找某一特定元素的搜索演算法。搜索過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜索過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。

Branch and bound

分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。

數據壓縮

數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。

Diffie–Hellman密鑰協商

Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。

Dijkstra』s 演算法

迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。

動態規劃

動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。

歐幾里得演算法

在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。

最大期望(EM)演算法

在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。

快速傅里葉變換(FFT)

快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。

哈希函數

HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。

堆排序

Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。

歸並排序

Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

RANSAC 演算法

RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。

RSA加密演演算法

這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。

並查集Union-find

並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。

Viterbi algorithm

尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。

參考資料:計算機演算法

閱讀全文

與合一演算法求非空有限具有相同相關的資料

熱點內容
命令方塊怎麼調鍵盤 瀏覽:841
不把密碼存在伺服器上怎麼辦 瀏覽:398
怎麼讓指令方塊的命令消失 瀏覽:543
用單片機做plc 瀏覽:404
雲伺服器進入子目錄命令 瀏覽:795
伺服器機櫃如何配電 瀏覽:578
怎麼刪除iphone資源庫里的app 瀏覽:940
pdf魚 瀏覽:648
單片機pcf8591什麼作用 瀏覽:805
sql命令學院 瀏覽:283
加密軟體在電腦那個盤 瀏覽:988
android獲取外部存儲 瀏覽:573
怎麼查自己家的伺服器地址 瀏覽:858
編程c語言工作好不好 瀏覽:569
單片機焊接地怎麼連接 瀏覽:694
游戲源碼怎麼抓 瀏覽:216
程序員幫大家引走怪物 瀏覽:16
手機網頁小游戲源碼 瀏覽:513
戰地一伺服器怎麼設置管理員 瀏覽:396
數控車床編程可以上班嗎 瀏覽:460