1. 概述 首先回顧一下 Android NDK 開發中,Android.mk 和 Application.mk 各自的職責。 Android.mk,負責配置如下內容: (1) 模塊名(LOCAL_MODULE) (2) 需要編譯的源文件(LOCAL_SRC_FILES) (3) 依賴的第三方庫(LOCAL_STATIC_LIBRARIES,LOCAL_SHARED_LIBRARIES) (4) 編譯/鏈接選項(LOCAL_LDLIBS、LOCAL_CFLAGS) Application.mk,負責配置如下內容: (1) 目標平台的ABI類型(默認值:armeabi)(APP_ABI) (2) Toolchains(默認值:GCC 4.8) (3) C++標准庫類型(默認值:system)(APP_STL) (4) release/debug模式(默認值:release) 由此我們可以看到,本文所涉及的編譯選項在Android.mk和Application.mk中均有出現,下面我們將一個個詳細介紹。 2. APP_ABI ABI全稱是:Application binary interface,即:應用程序二進制介面,它定義了一套規則,允許編譯好的二進制目標代碼在所有兼容該ABI的操作系統和硬體平台中無需改動就能運行。(具體的定義請參考 網路 或者 維基網路 ) 由上述定義可以判斷,ABI定義了規則,而具體的實現則是由編譯器、CPU、操作系統共同來完成的。不同的CPU晶元(如:ARM、Intel x86、MIPS)支持不同的ABI架構,常見的ABI類型包括:armeabi,armeabi-v7a,x86,x86_64,mips,mips64,arm64-v8a等。 這就是為什麼我們編譯出來的可以運行於Windows的二進製程序不能運行於Mac OS/Linux/Android平台了,因為CPU晶元和操作系統均不相同,支持的ABI類型也不一樣,因此無法識別對方的二進製程序。 而我們所說的「交叉編譯」的核心原理也跟這些密切相關,交叉編譯,就是使用交叉編譯工具,在一個平台上編譯生成另一個平台上的二進制可執行程序,為什麼可以做到?因為交叉編譯工具實現了另一個平台所定義的ABI規則。我們在Windows/Linux平台使用Android NDK交叉編譯工具來編譯出Android平台的庫也是這個道理。 這里給出最新 Android NDK 所支持的ABI類型及區別: 那麼,如何指定ABI類型呢?在 Application.mk 文件中添加一行即可: APP_ABI := armeabi-v7a //只編譯armeabi-v7a版本 APP_ABI := armeabi armeabi-v7a //同時編譯armeabi,armeabi-v7a版本 APP_ABI := all //編譯所有版本 3. LOCAL_LDLIBS Android NDK 除了提供了Bionic libc庫,還提供了一些其他的庫,可以在 Android.mk 文件中通過如下方式添加依賴: LOCAL_LDLIBS := -lfoo 其中,如下幾個庫在 Android NDK 編譯時就默認鏈接了,不需要額外添加在 LOCAL_LDLIBS 中: (1) Bionic libc庫 (2) pthread庫(-lpthread) (3) math(-lmath) (4) C++ support library (-lstdc++) 下面我列了一個表,給出了可以添加到「LOCAL_LDLIBS」中的不同版本的Android NDK所支持的庫: 下面是我總結的一些常用的CFLAGS編譯選項: (1)通用的編譯選項 -O2 編譯優化選項,一般選擇O2,兼顧了優化程度與目標大小 -Wall 打開所有編譯過程中的Warning -fPIC 編譯位置無關的代碼,一般用於編譯動態庫 -shared 編譯動態庫 -fopenmp 打開多核並行計算, -Idir 配置頭文件搜索路徑,如果有多個-I選項,則路徑的搜索先後順序是從左到右的,即在前面的路徑會被選搜索 -nostdinc 該選項指示不要標准路徑下的搜索頭文件,而只搜索-I選項指定的路徑和當前路徑。 --sysroot=dir 用dir作為頭文件和庫文件的邏輯根目錄,例如,正常情況下,如果編譯器在/usr/include搜索頭文件,在/usr/lib下搜索庫文件,它將用dir/usr/include和dir/usr/lib替代原來的相應路徑。 -llibrary 查找名為library的庫進行鏈接 -Ldir 增加-l選項指定的庫文件的搜索路徑,即編譯器會到dir路徑下搜索-l指定的庫文件。 -nostdlib 該選項指示鏈接的時候不要使用標准路徑下的庫文件 (2) ARM平台相關的編譯選項 -marm -mthumb 二選一,指定編譯thumb指令集還是arm指令集 -march=name 指定特定的ARM架構,常用的包括:-march=armv6, -march=armv7-a -mfpu=name 給出目標平台的浮點運算處理器類型,常用的包括:-mfpu=neon,-mfpu=vfpv3-d16 -mfloat-abi=name 給出目標平台的浮點預算ABI,支持的參數包括:「soft」, 「softfp」 and 「hard」
⑵ 使用cmake/make打包Android 動態庫
打包需要使用cmake是AndroidSdk目錄下的
${ANDROID_HOME}/cmake/3.6.4111459/bin/cmake
參數:
-H
-B
-DANDROID_NDK
-DCMAKE_LIBRARY_OUTPUT_DIRECTORY
-DCMAKE_MAKE_PROGRAM
-DCMAKE_TOOLCHAIN_FILE
-DANDROID_ABI
-DCMAKE_BUILD_TYPE
-DANDROID_NATIVE_API_LEVEL 最低支持的Api版本
-DANDROID_TOOLCHAIN
-DCMAKE_GENERATOR
打包所有abi的腳本例子:
⑶ 新人求教,編譯一個最簡單的Android程序,提示下面的錯誤咋解決
1、32位系統下的編譯
如果需要在32位系統中編譯android系統,在編譯前需要對部分makefile進行修改
首先修改build/core/main.mk,修改的內容如下所示:
-ifneq (64,$(findstring 64,$(build_arch)))
+ifneq
(i686,$(findstring i686,$(build_arch)))
$(warning
************************************************************) $(warning You are attempting to build on a 32-bit system.)
$(warning Only 64-bit build environments are supported beyond froyo/2.2.)
其次修改如下四個文件:
external/clearsilver/cgi/Android.mk
external/clearsilver/java-jni/Android.mk
external/clearsilver/util/Android.mk
external/clearsilver/cs/Android.mk # This forces a 64-bit build for Java6
-LOCAL_CFLAGS += -m64
-LOCAL_LDFLAGS += -m64
+LOCAL_CFLAGS += -m32
+LOCAL_LDFLAGS += -m32即將LOCAL_CFLAGS和LOCAL_LDFLAGS由-m64改為-m32,從而指定使用32位系統進行編譯如果使用 64bit 的操作系統編譯,這些就都不用修改,但記得需要安裝:For 64-bit servers the following extra packages may be needed:
"sudo apt-get install libc6-dev-i386" (libc6-dev-amd64 if AMD CPU)
"sudo apt-get install g++-multilib lib32ncurses5-dev lib32z1-dev"
還有 jdk64bit 的版本編譯2 、build/core/base_rules.mk:128:*** frameworks/opt/emoji/jni:
.... libgl2jni already defined by framwworks/base/opengl/tests/gl2_jni/jni 停止
從編譯規則上看:
# Make sure that this IS_HOST/CLASS/MODULE combination is unique.
mole_id := MODULE.$(if \
$(LOCAL_IS_HOST_MODULE),HOST,TARGET).$(LOCAL_MODULE_CLASS).$(LOCAL_MODULE)
ifdef $(mole_id)
$(error $(LOCAL_PATH): $(mole_id) already defined by $($(mole_id)))
endif
在framwworks/base/opengl/tests/gl2_jni/下面定義的android.mk定義了:
LOCAL_MODULE := libgl2jni
include $(BUILD_SHARED_LIBRARY)
導致生成的動態庫重復,這是不對的,修改tests這個目錄不參與編譯即可,最直接的辦法刪除掉framwworks/base/opengl/tests/gl2_jni這個文件夾
3、AIDL 編譯報couldn't find import for class原因
「AIDL服務只支持有限的數據類型,因此,如果用AIDL服 務傳遞一些復雜的數據就需要做更一步處理。AIDL服務支持的數據類型如下:
Java的簡單類 型(int、char、boolean等)。不需要導入(import)。String和 CharSequence。不需要導入(import)。
List和 Map。但要注意,List和Map對象的元素類型必須是AIDL服務支持的數據類型。不需要導入(import)。AIDL自動生成 的介面。需要導入(import)。
實現 android.os.Parcelable介面的類。需要導入(import)。
其中後兩種數據類 型需要使用import進行導入,傳遞不需要 import的數據類型的值的方式相同。傳遞一個需要import的數據類型的值(例如,實現android.os.Parcelable 介面的類)的步 驟略顯復雜。除了要建立一個實現android.os.Parcelable介面的類外,還需要為這個類單獨建立一個aidl文件,並使用parcelable關鍵字進行定義。」
沒有加LOCAL_AIDL_INCLUDES += xxx ,所以找不到我的parcelable aidl文件。
修改android源碼根目錄下的build/core/pathmap.mk把你的目錄加進去,此時再make update-api
4、老是提示 @Override錯誤 方法未覆蓋其父類的方法
使 用JDK1.6編譯沒有問題,使用JDK1.5編譯,會報@Override方法未覆蓋其父類的方法。實際上這個方法是類實現的介面中方法,
但是,這個語 法的jdk1.6的下面是可以通過的,也就是說jdk1.6認為類覆蓋父類方法與實現介面方法都叫override,而jdk1.5不
是這樣認為的,不知 道這是當初jdk1.5的bug,還是當初就是認為覆蓋父類方法與實現介面方法是不一樣的,不得而知。但是從
OO角度來看,覆蓋父類方法與實現介面方法都 可以認為override,因為他們目的都是一樣的,都是為了重用,都是多態的一種
表現方式。
更改jdk版本為1.6即可
5、編譯alsa-lib庫錯誤
android系統開發移植alsa-lib庫的過程中編譯的時候出現了如下的錯誤
/tmp/cckyaR40.s: Assembler messages:
/tmp/cckyaR40.s:2763: Error: selected processor does not support `mrs ip,cpsr'
/tmp/cckyaR40.s:2764: Error: unshifted register required -- `orr r2,ip,#128'
/tmp/cckyaR40.s:2765: Error: selected processor does not support `msr cpsr_c,r2
字面的意思報的是匯編錯誤,選擇的處理器不支持mrs和msr指令。
原來的ARM指令有32位和16位兩種指令模式,16位為thumb指令集,thumb指令集編譯出的代碼佔用空間小,
而且效率也高,所以android的arm編譯器默認用的是thumb模式編譯,問題在於alsa的代碼中有部分的內容
⑷ Android.mk介紹(一)
在Linux下,可以通過Makefile來對源碼工程進行管理,Android.mk文件是Makefile的一小部分,它用來對Android程序進行編譯。Android.mk文件中描述了哪些C文件將被編譯且指明了如何編譯。Android.mk文件用來告知NDK Build 系統關於Source的信息。
1、編譯可執行程序
2、編譯動態庫或靜態庫
3、預編譯文件(APK或Java庫)
以上三種是Android.mk的主要用法,我們寫mk文件時也就是以上三種目的。
首先看一個最簡單的Android.mk的例子:
講解:
每個Android.mk文件必須以定義 LOCAL_PATH 為開始。它用於在開發tree中查找源文件。
宏 my-dir 由Build System提供。返回包含Android.mk的目錄路徑。
CLEAR_VARS 變數由Build System提供。並指向一個指定的GNU Makefile,由它負責清理很多LOCAL_xxx.
例如:LOCAL_MODULE, LOCAL_SRC_FILES, LOCAL_STATIC_LIBRARIES等等。但不清理 LOCAL_PATH .
這個清理動作是必須的,因為所有的編譯控制文件由同一個GNU Make解析和執行,其變數是全局的。所以清理後才能避免相互影響。
LOCAL_MODULE 模塊必須定義,以表示Android.mk中的每一個模塊。名字必須唯一且不包含空格。
Build System會自動添加適當的前綴和後綴。例如,foo,要產生動態庫,則生成libfoo.so.
但請注意:如果模塊名被定為:libfoo.則生成libfoo.so. 不再加前綴。
LOCAL_SRC_FILES變數必須包含將要打包如模塊的C/C++ 源碼。
不必列出頭文件,build System 會自動幫我們找出依賴文件。
預設的C++源碼的擴展名為.cpp. 也可以修改,通過LOCAL_CPP_EXTENSION。
BUILD_SHARED_LIBRARY:是Build System提供的一個變數,指向一個GNU Makefile Script。
它負責收集自從上次調用include $(CLEAR_VARS) 後的所有LOCAL_XXX信息。並決定編譯為什麼。
BUILD_STATIC_LIBRARY:編譯為靜態庫。
BUILD_SHARED_LIBRARY :編譯為動態庫
BUILD_EXECUTABLE:編譯為Native C可執行程序
BUILD_PACKAGE(既可以編apk,也可以編資源包文件,但是需要指定LOCAL_EXPORT_PACKAGE_RESOURCES:=true)
BUILD_JAVA_LIBRARY(Java共享庫)
BUILD_STATIC_JAVA_LIBRARY(java靜態庫)
Android源碼中有大量的mk文件,Android系統的編譯就是靠著這些mk文件的,所以學好是非常有必要的哦!
⑸ so庫如何適配安卓32bit\64bit 的cpu 怎麼編譯
JAVA編譯不分32bit和64bit(APK,JAR)
可執行文件,默認編譯64位
動態庫和靜態庫,默認同時編譯32bit和64bit版本
通過LOCAL_MULTILIB可以指定特定模塊編譯32bit或64bit或都編譯
JAVA載入JNI庫(so文件)的規則:
如果APP需要載入的所有so都是32bit,則使用32bit方式載入so庫;如果APP需要載入的so庫中只要有一個so是64bit的,則必須以64bit方式載入so庫;不能同時載入32bit和64bit的so庫。
實際工程中,我們通常會遇到下面這樣的場景:
A. APK有源碼,SO庫有源碼 - 應用及so庫我們都能自己編譯出來
B. APK有源碼,SO庫沒有源碼 - 我們開發的應用使用了第三方的so庫,如ScanService
C. APK和SO庫都沒有源碼 - 預置第三方的應用(應用中包括so庫)
對於場景A:
只要我們編譯默認對應的APP和SO庫(32bit+64bit)即可。
此種場景最為普通,本文不做詳細講解。
對於場景B:
如果APK需要載入的庫裡面有64bit的,則需要全部的庫都使用64bit。
如果APK調用的第三方so庫中有32bit的,則:要麼讓第三方提供64bit版本的so庫,要麼強制使所以的so庫都使用32bit版本。
對於場景C:
使用特定的預置規則即可。
⑹ android中如何編譯出64位so文件
如果是在Linux下編譯Android源碼,有可能是兩個原因:
1. lunch命令有32位和64位的區別,注意選能夠編譯64位so的命令
2. mk文件中有LOCAL_MODULE_PATH的值比如為$(TARGET_OUT_SHARED_LIBRARIES)/hw的改為LOCAL_MODULE_RELATIVE_PATH := hw,後一種可以分別在lib和lib64下分別生成32位和64位的so文件,這個看看編譯後的信息就知道了.
⑺ Android中的armeabi、armeabi-v7a、arm64-v8a及x86的詳解
一. lib和libs
放在lib中的是被reference的,放在libs中的是被include的。
放在libs中的文件會自動被編輯器所include。所以不要把API放到libs里去。
lib的內容是不會被打包到APK中,libs中的內容是會被打包進APK中
二. .so庫
NDK編譯出來的動態鏈接庫。
一些重要的加密演算法或者核心協議一般都用c寫然後給java調用。這樣可以避免反編譯後查看到應用的源碼。
三. .so庫該如何存放
放置 .so 文件的正確姿勢其實就兩句話:
• 為了減小 apk 體積,只保留 armeabi 和 armeabi-v7a 兩個文件夾,並保證這兩個文件夾中 .so 數量一致
• 對只提供 armeabi 版本的第三方 .so,原樣復制一份到 armeabi-v7a 文件夾
存放so的規則:
你應該盡可能的提供專為每個ABI優化過的.so文件,但要麼全部支持,要麼都不支持:你不應該混合著使用。你應該為每個ABI目錄提供對應的.so文件。
四. libs下armeabi等的作用是什麼
存放.so庫,主要針對不同的設備兼容,也可以說是專門針對不同Android手機下CPU架構的兼容。
Android 設備的CPU類型(通常稱為」ABIs」)
早期的Android系統幾乎只支持ARMv5的CPU架構,後面發展到支持七種不同的CPU架構:ARMv5,ARMv7 (從2010年起),x86 (從2011年起),MIPS (從2012年起),ARMv8,MIPS64和x86_64 (從2014年起),每一種都關聯著一個相應的ABI。
應用程序二進制介面(Application Binary Interface)定義了二進制文件(尤其是.so文件)如何運行在相應的系統平台上,從使用的指令集,內存對齊到可用的系統函數庫。在Android 系統上,每一個CPU架構對應一個ABI:armeabi,armeabi-v7a,x86,mips,arm64- v8a,mips64,x86_64。
armeabi-v7a: 第7代及以上的 ARM 處理器。2011年以後生產的大部分Android設備都使用它.
arm64-v8a: 第8代、64位ARM處理器,很少設備,三星 Galaxy S6是其中之一。
armeabi: 第5代、第6代的ARM處理器,早期的手機用的比較多。
x86: 平板、模擬器用得比較多。
x86_64: 64位的平板。
如果項目只包含了 armeabi,那麼在所有Android設備都可以運行;
如果項目只包含了 armeabi-v7a,除armeabi架構的設備外都可以運行;
如果項目只包含了 x86,那麼armeabi架構和armeabi-v7a的Android設備是無法運行的; 如果同時包含了 armeabi, armeabi-v7a和x86,所有設備都可以運行,程序在運行的時候去載入不同平台對應的so,這是較為完美的一種解決方案,同時也會導致包變大。
最後,如果我們只想支持armeabi-v7a,那麼需要在gradle中配置
因為默認情況下,打包後會自動生成armeabi 到 x86的所有文件夾。這就有可能導致一些x86的設備因為在x86文件夾下找不到so文件而崩潰。
⑻ 怎麼重新編譯android 下面的動態庫
使用動態庫來編譯動態庫
A項目的android.mk文件如下:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := testa
LOCAL_SRC_FILES := testa.c
include $(BUILD_SHARED_LIBRARY)
生成的libtesta.so加入到E:\workspace\android-ndk-r8e\platforms\android-8\arch-arm\usr\lib\下面
項目B的文件目錄結構如下:
jni
jni/jni/
jni/prebuilt/
jni目錄下的mk文件如下:
include $(all-subdir-makefiles)
jni/prebuilt目錄下的mk文件如下:
LOCAL_PATH := $(call my-dir)
#include $(CLEAR_VARS)
LOCAL_MODULE := libtesta
LOCAL_SRC_FILES := libtesta.so
include $(PREBUILT_SHARED_LIBRARY)
同時把libtesta.so也放入該目錄下.
jni/jni目錄下的mk文件內容:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_LDLIBS := -ltesta
LOCAL_MODULE := testb
LOCAL_SRC_FILES := testb.c
include $(BUILD_SHARED_LIBRARY)
這樣生成libtestb.so文件, 同時eclipse在打包時會把libtesta.so, libtestb.so都加入到apk文件中,如果沒有prebuilt那一步,那麼在打包時會漏掉libtesta.so, 但編譯會通過,因為編譯讀取的是編譯系統的庫文件目錄(LOCAL_LDLIBS := -ltesta), 這點需要注意
java代碼:
System.loadLibrary("testa");
System.loadLibrary("testb");
注意先後關系