Ⅰ 決策樹演算法
決策樹演算法的演算法理論和應用場景
演算法理論:
我了解的決策樹演算法,主要有三種,最早期的ID3,再到後來的C4.5和CART這三種演算法。
這三種演算法的大致框架近似。
決策樹的學習過程
1.特徵選擇
在訓練數據中 眾多X中選擇一個特徵作為當前節點分裂的標准。如何選擇特徵有著很多不同量化評估標准,從而衍生出不同的決策樹演算法。
2.決策樹生成
根據選擇的特徵評估標准,從上至下遞歸生成子節點,直到數據集不可分或者最小節點滿足閾值,此時決策樹停止生長。
3.剪枝
決策樹極其容易過擬合,一般需要通過剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有前剪枝和後剪枝兩種。
有些演算法用剪枝過程,有些沒有,如ID3。
預剪枝:對每個結點劃分前先進行估計,若當前結點的劃分不能帶來決策樹的泛化性能的提升,則停止劃分,並標記為葉結點。
後剪枝:現從訓練集生成一棵完整的決策樹,然後自底向上對非葉子結點進行考察,若該結點對應的子樹用葉結點能帶來決策樹泛化性能的提升,則將該子樹替換為葉結點。
但不管是預剪枝還是後剪枝都是用驗證集的數據進行評估。
ID3演算法是最早成型的決策樹演算法。ID3的演算法核心是在決策樹各個節點上應用信息增益准則來選擇特徵,遞歸構建決策樹。缺點是,在選擇分裂變數時容易選擇分類多的特徵,如ID值【值越多、分叉越多,子節點的不純度就越小,信息增益就越大】。
ID3之所以無法 處理缺失值、無法處理連續值、不剪紙等情況,主要是當時的重點並不是這些。
C4.5演算法與ID3近似,只是分裂標准從 信息增益 轉變成 信息增益率。可以處理連續值,含剪枝,可以處理缺失值,這里的做法多是 概率權重。
CART:1.可以處理連續值 2.可以進行缺失值處理 3.支持剪枝 4.可以分類可以回歸。
缺失值的處理是 作為一個單獨的類別進行分類。
建立CART樹
我們的演算法從根節點開始,用訓練集遞歸的建立CART樹。
1) 對於當前節點的數據集為D,如果樣本個數小於閾值或者沒有特徵,則返回決策子樹,當前節點停止遞歸。
2) 計算樣本集D的基尼系數, 如果基尼系數小於閾值 (說明已經很純了!!不需要再分了!!),則返回決策樹子樹,當前節點停止遞歸。
3) 計算當前節點現有的各個特徵的各個特徵值對數據集D的基尼系數。
4) 在計算出來的各個特徵的各個特徵值對數據集D的基尼系數中,選擇 基尼系數最小的特徵A和對應的特徵值a。根據這個最優特徵和最優特徵值,把數據集劃分成兩部分D1和D2,同時建立當前節點的左右節點,做節點的數據集D為D1,右節點的數據集D為D2。 (註:注意是二叉樹,故這里的D1和D2是有集合關系的,D2=D-D1)
5) 對左右的子節點遞歸的調用1-4步,生成決策樹。
CART採用的辦法是後剪枝法,即先生成決策樹,然後產生所有可能的剪枝後的CART樹,然後使用交叉驗證來檢驗各種剪枝的效果,選擇泛化能力最好的剪枝策略。
應用場景
比如欺詐問題中,通過決策樹演算法簡單分類,默認是CART的分類樹,默認不剪枝。然後在出圖後,自行選擇合適的葉節點進行拒絕操作。
這個不剪枝是因為欺詐問題的特殊性,欺詐問題一般而言較少,如數據的萬幾水平,即正樣本少,而整個欺詐問題需要解決的速度較快。此時只能根據業務要求,迅速針對已有的正樣本情況,在控制准確率的前提下,盡可能提高召回率。這種情況下,可以使用決策樹來簡單應用,這個可以替代原本手工選擇特徵及特徵閾值的情況。
Ⅱ 決策樹演算法總結
目錄
一、決策樹演算法思想
二、決策樹學習本質
三、總結
一、決策樹(decision tree)演算法思想:
決策樹是一種基本的分類與回歸方法。本文主要討論分類決策樹。決策樹模型呈樹形結構,在分類問題中,表示基於特徵對實例進行分類的過程。 它可以看做是if-then的條件集合,也可以認為是定義在特徵空間與類空間上的條件概率分布 。決策樹由結點和有向邊組成。結點有兩種類型:內部結點和葉結點,內部結點表示一個特徵或屬性,葉結點表示一個類。(橢圓表示內部結點,方塊表示葉結點)
決策樹與if-then規則的關系
決策樹可以看做是多個if-then規則的集合。將決策樹轉換成if-then規則的過程是:由決策樹的根結點到葉結點的每一條路徑構建一條規則;路徑上的內部結點的特徵對應著規則的條件,而葉結點的類對應著規則的結論。決策樹的路徑或其對應的if-then規則集合具有一個重要的性質:互斥且完備。這就是說,每一個實例都被一條路徑或一條規則所覆蓋,且只被一條路徑或一條規則所覆蓋。這里的覆蓋是指實例的特徵與路徑上的特徵一致或實例滿足規則的條件。
決策樹與條件概率分布的關系
決策樹還表示給定特徵條件下類的條件概率分布。這一條件概率分布定義在特徵空間的一個劃分上。將特徵空間劃分為互不相交的單元或區域,並在每個單元定義一個類的概率分布,就構成一個條件概率分布。決策樹的一條路徑對應於劃分中的一個單元。決策樹所表示的條件概率分布由各個單元給定條件下類的條件概率分布組成。
決策樹模型的優點
決策樹模型具有可讀性,分類速度快。學習時,利用訓練數據,根據損失函數最小化原則建立決策樹模型;預測時,對新的數據,利用決策樹模型進行分類 。
二、決策樹學習本質:
決策樹學習是從訓練數據集中歸納一組分類規則、與訓練數據集不相矛盾的決策樹可能有多個,也可能一個沒有。我們需要訓練一個與訓練數據矛盾較小的決策樹,同時具有很好的泛化能力。從另一個角度看 決策樹學習是訓練數據集估計條件概率模型 。基於特徵空間劃分的類的條件概率模型有無窮多個。我們選擇的條件概率模型應該是不僅對訓練數據有很好的擬合,而且對未知數據有很好的預測。 決策樹的學習使用損失函數表示這一目標,通常的損失函數是正則化的極大似然函數。決策樹的學習策略是以損失函數為目標函數的最小化。當損失函數確定後,決策樹學習問題變為損失函數意義下選擇最優決策樹的問題。這一過程通常是一個遞歸選擇最優特徵,並根據特徵對訓練數據進行分割,使得對各個子數據集有一個最好分類的過程。這一過程對應著特徵選擇、決策樹的生成、決策樹的剪枝。
特徵選擇 : 在於選擇對訓練數據具有分類能力的特徵,這樣可以提高決策樹的學習效率。
決策樹的生成 : 根據不同特徵作為根結點,劃分不同子結點構成不同的決策樹。
決策樹的選擇 :哪種特徵作為根結點的決策樹信息增益值最大,作為最終的決策樹(最佳分類特徵)。
信息熵 : 在資訊理論與概率統計中,熵是表示隨機變數不確定性的度量。設X是一個取有限個值的離散隨機變數,其概率分布為P(X= ) = ,i=1,2,3...n,則隨機變數X的熵定義為
H(X) = — ,0 <= H(X) <= 1,熵越大,隨機變數的不確定性就越大。
條件熵(Y|X) : 表示在已知隨機變數X的條件下隨機變數Y的不確定性。
信息增益 : 表示得知特徵X的信息而使得類Y的信息的不確定性減少的程度。
信息增益 = 信息熵(父結點熵 ) — 條件熵(子結點加權熵)
三、 總結 :
優點
1、可解釋性高,能處理非線性的數據,不需要做數據歸一化,對數據分布沒有偏好。
2、可用於特徵工程,特徵選擇。
3、可轉化為規則引擎。
缺點
1、啟發式生成,不是最優解。
2、容易過擬合。
3、微小的數據改變會改變整個數的形狀。
4、對類別不平衡的數據不友好。
Ⅲ 決策樹(Decision Tree)
決策樹(Decision Tree)是一種基本的分類與回歸方法,其模型呈樹狀結構,在分類問題中,表示基於特徵對實例進行分類的過程。本質上,決策樹模型就是一個定義在特徵空間與類空間上的條件概率分布。決策樹學習通常包括三個步驟: 特徵選擇 、 決策樹的生成 和 決策樹的修剪 。
分類決策樹模型是一種描述對實例進行分類的樹形結構,決策樹由節點(node)和有向邊(directed edge)組成。節點有兩種類型:內部節點(internal node)和葉節點(leaf node)。內部節點表示一個特徵或屬性,葉節點表示一個類。
利用決策樹進行分類,從根節點開始,對實例的某一特徵進行測試,根據測試結果將實例分配到其子節點;這時,每一個子節點對應著該特徵的一個取值。如此遞歸地對實例進行測試並分配,直至達到葉節點。最後將實例分到葉節點的類中。
決策樹是給定特徵條件下類的條件概率分布,這一條件概率分布定義在特徵區間的一個劃分(partiton)上。將特徵空間劃分為互不相交的單元(cell)或區域(region),並在每個單元定義一個類的概率分布就構成了一個條件概率分布。決策樹的一條路徑對應劃分中的一個單元,決策樹所表示的條件概率分布由各個單元給定條件下類的條件概率分布組成。假設X為表示特徵的隨機變數,Y為表示類的隨機變數,那麼這個條件概率分布可以表示成P(Y|X)。X取值於給定劃分下單元的集合,Y取值於類的集合,各葉節點(單元)上的條件概率往往偏向於某一個類,即屬於某一類的概率較大,決策樹分類時將該節點的實例分到條件概率大的那一類去。也就以為著決策樹學習的過程其實也就是由數據集估計條件概率模型的過程,這些基於特徵區間劃分的類的條件概率模型由無窮多個,在進行選擇時,不僅要考慮模型的擬合能力還要考慮其泛化能力。
為了使模型兼顧模型的擬合和泛化能力,決策樹學習使用正則化的極大似然函數來作為損失函數,以最小化損失函數為目標,尋找最優的模型。顯然從所有可能的決策樹中選取最優決策樹是NP完全問題,所以在實際中通常採用啟發式的方法,近似求解這一最優化問題: 通過遞歸的選擇最優特徵,根據該特徵對訓練數據進行劃分直到使得各個子數據集有一個最好的分類,最終生成特徵樹 。當然,這樣得到的決策樹實際上是次最優(sub-optimal)的。進一步的,由於決策樹的演算法特性,為了防止模型過擬合,需要對已生成的決策樹自下而上進行剪枝,將樹變得更簡單,提升模型的泛化能力。具體來說,就是去掉過於細分的葉節點,使其退回到父節點,甚至更高的節點,然後將父節點或更高的節點改為新的葉節點。如果數據集的特徵較多,也可以在進行決策樹學習之前,對數據集進行特徵篩選。
由於決策樹是一個條件概率分布,所以深淺不同的決策樹對應著不同復雜度的概率模型,決策樹的生成對應模型的局部選擇,決策樹的剪枝對應著模型的全局選擇。
熵(Entropy) 的概念最早起源於物理學,最初物理學家用這個概念度量一個熱力學系統的無序程度。在1948年, 克勞德·艾爾伍德·香農 將熱力學的熵,引入到 資訊理論 ,因此它又被稱為 香農熵 。在資訊理論中,熵是對不確定性的量度,在一條信息的熵越高則能傳輸越多的信息,反之,則意味著傳輸的信息越少。
如果有一枚理想的硬幣,其出現正面和反面的機會相等,則拋硬幣事件的熵等於其能夠達到的最大值。我們無法知道下一個硬幣拋擲的結果是什麼,因此每一次拋硬幣都是不可預測的。因此,使用一枚正常硬幣進行若干次拋擲,這個事件的熵是一 比特 ,因為結果不外乎兩個——正面或者反面,可以表示為 0, 1 編碼,而且兩個結果彼此之間相互獨立。若進行 n 次 獨立實驗 ,則熵為 n ,因為可以用長度為 n 的比特流表示。但是如果一枚硬幣的兩面完全相同,那個這個系列拋硬幣事件的熵等於零,因為 結果能被准確預測 。現實世界裡,我們收集到的數據的熵介於上面兩種情況之間。
另一個稍微復雜的例子是假設一個 隨機變數 X ,取三種可能值 ,概率分別為 ,那麼編碼平均比特長度是: 。其熵為 。因此<u>熵實際是對隨機變數的比特量和順次發生概率相乘再總和的</u> 數學期望 。
依據玻爾茲曼H定理,香農把隨機變數X的熵 定義為:
其中 是隨機變數X的信息量,當隨機變數取自有限樣本時,熵可以表示為:
若 ,則定義 。
同理可以定義條件熵 :
很容易看出,條件熵(conditional entropy) 就是X給定條件下Y的條件概率分布的熵對X的數學期望。當熵和條件熵中的概率有極大似然估計得到時,所對應的熵和條件熵分別稱為檢驗熵(empirical entropy)和經驗條件熵(empirical conditional entropy).
熵越大,隨機變數的不確定性就越大,從定義可以驗證:
當底數 時,熵的單位是 ;當 時,熵的單位是 ;而當 時,熵的單位是 .
如英語有26個字母,假如每個字母在文章中出現的次數平均的話,每個字母的信息量 為:
同理常用漢字2500有個,假設每個漢字在文章中出現的次數平均的話,每個漢字的信息量 為:
事實上每個字母和漢字在文章中出現的次數並不平均,少見字母和罕見漢字具有相對較高的信息量,顯然,由期望的定義,熵是整個消息系統的平均消息量。
熵可以用來表示數據集的不確定性,熵越大,則數據集的不確定性越大。因此使用 劃分前後數據集熵的差值 量度使用當前特徵對於數據集進行劃分的效果(類似於深度學習的代價函數)。對於待劃分的數據集 ,其劃分前的數據集的熵 是一定的,但是劃分之後的熵 是不定的, 越小說明使用此特徵劃分得到的子集的不確定性越小(也就是純度越高)。因此 越大,說明使用當前特徵劃分數據集 時,純度上升的更快。而我們在構建最優的決策樹的時候總希望能更快速到達純度更高的數據子集,這一點可以參考優化演算法中的梯度下降演算法,每一步沿著負梯度方法最小化損失函數的原因就是負梯度方向是函數值減小最快的方向。同理:在決策樹構建的過程中我們總是希望集合往最快到達純度更高的子集合方向發展,因此我們總是選擇使得信息增益最大的特徵來劃分當前數據集 。
顯然這種劃分方式是存在弊端的,按信息增益准則的劃分方式,當數據集的某個特徵B取值較多時,依此特徵進行劃分更容易得到純度更高的數據子集,使得 偏小,信息增益會偏大,最終導致信息增益偏向取值較多的特徵。
設 是 個數據樣本的集合,假定類別屬性具有 個不同的值: ,設 是類 中的樣本數。對於一個給定樣本,它的信息熵為:
其中, 是任意樣本屬於 的概率,一般可以用 估計。
設一個屬性A具有 個不同的值 ,利用屬性A將集合 劃分為 個子集 ,其中 包含了集合 中屬性 取 值的樣本。若選擇屬性A為測試屬性,則這些子集就是從集合 的節點生長出來的新的葉節點。設 是子集 中類別為 的樣本數,則根據屬性A劃分樣本的信息熵為:
其中 , 是子集 中類別為 的樣本的概率。最後,用屬性A劃分樣本子集 後所得的 信息增益(Gain) 為:
即,<u>屬性A的信息增益=劃分前數據的熵-按屬性A劃分後數據子集的熵</u>。 信息增益(information gain)又稱為互信息(matual information)表示得知特徵X的信息而使得類Y的信息的不確定性減少的程度 。信息增益顯然 越小, 的值越大,說明選擇測試屬性A對於分類提供的信息越多,選擇A之後對分類的不確定程度越小。
經典演算法 ID3 使用的信息增益特徵選擇准則會使得劃分更偏相遇取值更多的特徵,為了避免這種情況。ID3的提出者 J.Ross Quinlan 提出了 C4.5 ,它在ID3的基礎上將特徵選擇准則由 信息增益 改為了 信息增益率 。在信息增益的基礎之上乘上一個懲罰參數。特徵個數較多時,懲罰參數較小;特徵個數較少時,懲罰參數較大(類似於正則化)。這個懲罰參數就是 分裂信息度量 的倒數 。
不同於 ID3 和 C4.5 , CART 使用基尼不純度來作為特徵選擇准則。基尼不純度也叫基尼指數 , 表示在樣本集合中一個隨機選中的樣本被分錯的概率 則<u>基尼指數(基尼不純度)= 樣本被選中的概率 * 樣本被分錯的概率</u>。Gini指數越小表示集合中被選中的樣本被分錯的概率越小,也就是說集合的純度越高,反之,集合越不純。
樣本集合的基尼指數:
樣本集合 有m個類別, 表示第 個類別的樣本數量,則 的Gini指數為:
基於某個特徵劃分樣本集合S之後的基尼指數:
CART是一個二叉樹,也就是當使用某個特徵劃分樣本集合後,得到兩個集合:a.等於給定的特徵值的樣本集合 ;b.不等於給定特徵值的樣本集合 。實質上是對擁有多個取值的特徵的二值處理。
對於上述的每一種劃分,都可以計算出基於劃分特=某個特徵值將樣本集合劃分為兩個子集的純度:
因而對於一個具有多個取值(超過2個)的特徵,需要計算以每個取值為劃分點,對樣本集合劃分後子集的純度 ( 表示特徵 的可能取值)然後從所有的劃分可能 中找出Gini指數最小的劃分,這個劃分的劃分點,就是使用特徵 對樣本集合 進行劃分的最佳劃分點。
參考文獻 :
決策樹--信息增益,信息增益比,Geni指數的理解
【機器學習】深入理解--信息熵(Information Entropy)
統計學習方法 (李航)
為了便於理解,利用以下數據集分別使用三種方法進行分類:
在進行具體分析之前,考慮到收入是數值類型,要使用決策樹演算法,需要先對該屬性進行離散化。
在機器學習演算法中,一些分類演算法(ID3、Apriori等)要求數據是分類屬性形式,因此在處理分類問題時經常需要將一些連續屬性變換為分類屬性。一般來說,連續屬性的離散化都是通過在數據集的值域內設定若干個離散的劃分點,將值域劃分為若干區間,然後用不同的符號或整數數值代表落在每個子區間中的數據值。所以,離散化最核心的兩個問題是:如何確定分類數以及如何將連續屬性映射到這些分類值。常用的離散化方法有 等寬法 , 等頻法 以及 一維聚類法 等。
在實際使用時往往使用Pandas的 cut() 函數實現等寬離散化:
可以看到與手工計算的離散化結果相同,需要注意的是,<u> 等寬法對於離群點比較敏感,傾向於不均勻地把屬性值分布到各個區間,導致某些區間數據較多,某些區間數據很少,這顯然不利用決策模型的建立。 </u>
使用四個分位數作為邊界點,對區間進行劃分:
<u> 等頻率離散化雖然避免了等寬離散化的數據分布不均勻的問題,卻可能將相同的數據值分到不同的區間以滿足每個區間具有相同數量的屬性取值的要求。 </u>
使用一維聚類的離散化方法後得到數據集為:
在本次實例中選擇使用基於聚類的離散化方法後得到的數據集進行指標計算。為了預測客戶能否償還債務,使用A(擁有房產)、B(婚姻情況)、C(年收入)等屬性來進行數據集的劃分最終構建決策樹。
單身 :
離婚 :
已婚 :
顯然,由B屬性取值'已婚'劃分得到的子數據集屬於同一個葉節點,無法再進行分類。
接下來,對由B屬性取值'單身'劃分得到的子數據集 再進行最優特徵選擇:
1)計算數據集 總的信息熵,其中4個數據中,能否償還債務為'是'數據有3,'否'數據有1,則總的信息熵:
2)對於A(擁有房產)屬性,其屬性值有'是'和'否'兩種。其中,在A為'是'的前提下,能否償還債務為'是'的有1、'否'的有0;在A為'否'的前提下,能否償還債務為'是'的有2、為'否'的有1,則A屬性的信息熵為:
3)對於B(婚姻情況)屬性,由於已被確定,在這個數據子集信息熵為0
4)對於C(年收入)屬性,其屬性值有'中等輸入'、'低收入'兩種。在C為'中等收入'的前提下,能否償還作為為'是'的有1,為'否'的有0;在C為'低收入'的前提下,能否償還作為為'是'的有2,為'否'的有1;則C屬性的信息熵為:
5)最後分別計算兩個屬性的信息增益值:
信息增益值相同,說明以兩個屬性對數據子集進行劃分後決策樹的純度上升是相同的,此時任選其一成為葉節點即可。
同理,對數據子集 進行最優特徵選擇,發現信息熵為0:
整理得到最終的決策樹:
Ⅳ 決策樹法分為那幾個步驟
1、特徵選擇
特徵選擇決定了使用哪些特徵來做判斷。在訓練數據集中,每個樣本的屬性可能有很多個,不同屬性的作用有大有小。因而特徵選擇的作用就是篩選出跟分類結果相關性較高的特徵,也就是分類能力較強的特徵。在特徵選擇中通常使用的准則是:信息增益。
2、決策樹生成
選擇好特徵後,就從根節點觸發,對節點計算所有特徵的信息增益,選擇信息增益最大的特徵作為節點特徵,根據該特徵的不同取值建立子節點;對每個子節點使用相同的方式生成新的子節點,直到信息增益很小或者沒有特徵可以選擇為止。
3、決策樹剪枝
剪枝的主要目的是對抗「過擬合」,通過主動去掉部分分支來降低過擬合的風險。
【簡介】
決策樹是一種解決分類問題的演算法,決策樹演算法採用樹形結構,使用層層推理來實現最終的分類。
Ⅳ 決策樹的原理及演算法
決策樹基本上就是把我們以前的經驗總結出來。我給你准備了一個打籃球的訓練集。如果我們要出門打籃球,一般會根據「天氣」、「溫度」、「濕度」、「刮風」這幾個條件來判斷,最後得到結果:去打籃球?還是不去?
上面這個圖就是一棵典型的決策樹。我們在做決策樹的時候,會經歷兩個階段:構造和剪枝。
構造就是生成一棵完整的決策樹。簡單來說,構造的過程就是選擇什麼屬性作為節點的過程,那麼在構造過程中,會存在三種節點:
根節點:就是樹的最頂端,最開始的那個節點。在上圖中,「天氣」就是一個根節點;
內部節點:就是樹中間的那些節點,比如說「溫度」、「濕度」、「刮風」;
葉節點:就是樹最底部的節點,也就是決策結果。
剪枝就是給決策樹瘦身,防止過擬合。分為「預剪枝」(Pre-Pruning)和「後剪枝」(Post-Pruning)。
預剪枝是在決策樹構造時就進行剪枝。方法是在構造的過程中對節點進行評估,如果對某個節點進行劃分,在驗證集中不能帶來准確性的提升,那麼對這個節點進行劃分就沒有意義,這時就會把當前節點作為葉節點,不對其進行劃分。
後剪枝就是在生成決策樹之後再進行剪枝,通常會從決策樹的葉節點開始,逐層向上對每個節點進行評估。如果剪掉這個節點子樹,與保留該節點子樹在分類准確性上差別不大,或者剪掉該節點子樹,能在驗證集中帶來准確性的提升,那麼就可以把該節點子樹進行剪枝。
1是欠擬合,3是過擬合,都會導致分類錯誤。
造成過擬合的原因之一就是因為訓練集中樣本量較小。如果決策樹選擇的屬性過多,構造出來的決策樹一定能夠「完美」地把訓練集中的樣本分類,但是這樣就會把訓練集中一些數據的特點當成所有數據的特點,但這個特點不一定是全部數據的特點,這就使得這個決策樹在真實的數據分類中出現錯誤,也就是模型的「泛化能力」差。
p(i|t) 代表了節點 t 為分類 i 的概率,其中 log2 為取以 2 為底的對數。這里我們不是來介紹公式的,而是說存在一種度量,它能幫我們反映出來這個信息的不確定度。當不確定性越大時,它所包含的信息量也就越大,信息熵也就越高。
ID3 演算法計算的是信息增益,信息增益指的就是劃分可以帶來純度的提高,信息熵的下降。它的計算公式,是父親節點的信息熵減去所有子節點的信息熵。
公式中 D 是父親節點,Di 是子節點,Gain(D,a) 中的 a 作為 D 節點的屬性選擇。
因為 ID3 在計算的時候,傾向於選擇取值多的屬性。為了避免這個問題,C4.5 採用信息增益率的方式來選擇屬性。信息增益率 = 信息增益 / 屬性熵,具體的計算公式這里省略。
當屬性有很多值的時候,相當於被劃分成了許多份,雖然信息增益變大了,但是對於 C4.5 來說,屬性熵也會變大,所以整體的信息增益率並不大。
ID3 構造決策樹的時候,容易產生過擬合的情況。在 C4.5 中,會在決策樹構造之後採用悲觀剪枝(PEP),這樣可以提升決策樹的泛化能力。
悲觀剪枝是後剪枝技術中的一種,通過遞歸估算每個內部節點的分類錯誤率,比較剪枝前後這個節點的分類錯誤率來決定是否對其進行剪枝。這種剪枝方法不再需要一個單獨的測試數據集。
C4.5 可以處理連續屬性的情況,對連續的屬性進行離散化的處理。比如打籃球存在的「濕度」屬性,不按照「高、中」劃分,而是按照濕度值進行計算,那麼濕度取什麼值都有可能。該怎麼選擇這個閾值呢,C4.5 選擇具有最高信息增益的劃分所對應的閾值。
針對數據集不完整的情況,C4.5 也可以進行處理。
暫無
請你用下面的例子來模擬下決策樹的流程,假設好蘋果的數據如下,請用 ID3 演算法來給出好蘋果的決策樹。
「紅」的信息增益為:1「大」的信息增益為:0
因此選擇「紅」的作為根節點,「大」沒有用,剪枝。
數據分析實戰45講.17 丨決策樹(上):要不要去打籃球?決策樹來告訴你