導航:首頁 > 源碼編譯 > ecc演算法原理

ecc演算法原理

發布時間:2023-12-27 17:51:44

❶ 橢圓曲線加密演算法

橢圓曲線加密演算法,即:Elliptic Curve Cryptography,簡稱ECC,是基於橢圓曲線數學理論實現的一種非對稱加密演算法。相比RSA,ECC優勢是可以使用更短的密鑰,來實現與RSA相當或更高的安全。據研究,160位ECC加密安全性相當於1024位RSA加密,210位ECC加密安全性相當於2048位RSA加密。

橢圓曲線在密碼學中的使用,是1985年由Neal Koblitz和Victor Miller分別獨立提出的。

一般情況下,橢圓曲線可用下列方程式來表示,其中a,b,c,d為系數。

例如,當a=1,b=0,c=-2,d=4時,所得到的橢圓曲線為:

該橢圓曲線E的圖像如圖X-1所示,可以看出根本就不是橢圓形。

過曲線上的兩點A、B畫一條直線,找到直線與橢圓曲線的交點,交點關於x軸對稱位置的點,定義為A+B,即為加法。如下圖所示:A + B = C

上述方法無法解釋A + A,即兩點重合的情況。因此在這種情況下,將橢圓曲線在A點的切線,與橢圓曲線的交點,交點關於x軸對稱位置的點,定義為A + A,即2A,即為二倍運算。

將A關於x軸對稱位置的點定義為-A,即橢圓曲線的正負取反運算。如下圖所示:

如果將A與-A相加,過A與-A的直線平行於y軸,可以認為直線與橢圓曲線相交於無窮遠點。

綜上,定義了A+B、2A運算,因此給定橢圓曲線的某一點G,可以求出2G、3G(即G + 2G)、4G......。即:當給定G點時,已知x,求xG點並不困難。反之,已知xG點,求x則非常困難。此即為橢圓曲線加密演算法背後的數學原理。

橢圓曲線要形成一條光滑的曲線,要求x,y取值均為實數,即實數域上的橢圓曲線。但橢圓曲線加密演算法,並非使用實數域,而是使用有限域。按數論定義,有限域GF(p)指給定某個質數p,由0、1、2......p-1共p個元素組成的整數集合中定義的加減乘除運算。

假設橢圓曲線為y² = x³ + x + 1,其在有限域GF(23)上時,寫作:y² ≡ x³ + x + 1 (mod 23)

此時,橢圓曲線不再是一條光滑曲線,而是一些不連續的點,如下圖所示。以點(1,7)為例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此還有如下點:

(0,1) (0,22)(1,7) (1,16)(3,10) (3,13)(4,0)(5,4) (5,19)(6,4) (6,19)(7,11) (7,12)(9,7) (9,16)(11,3) (11,20)等等。

另外,如果P(x,y)為橢圓曲線上的點,則-P即(x,-y)也為橢圓曲線上的點。如點P(0,1),-P=(0,-1)=(0,22)也為橢圓曲線上的點。

相關公式如下:有限域GF(p)上的橢圓曲線y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,則R(Xr,Yr) = P+Q 由如下規則確定:

Xr = (λ² - Xp - Xq) mod pYr = (λ(Xp - Xr) - Yp) mod p其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)

因此,有限域GF(23)上的橢圓曲線y² ≡ x³ + x + 1 (mod 23),假設以(0,1)為G點,計算2G、3G、4G...xG等等,方法如下:

計算2G:λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12Xr = (12² - 0 - 0) mod 23 = 6Yr = (12(0 - 6) - 1) mod 23 = 19即2G為點(6,19)

計算3G:3G = G + 2G,即(0,1) + (6,19)λ = (19 - 1)/(6 - 0) mod 23 = 3Xr = (3² - 0 - 6) mod 23 = 3Yr = (3(0 - 3) - 1) mod 23 = 13即3G為點(3, 13)

建立基於橢圓曲線的加密機制,需要找到類似RSA質因子分解或其他求離散對數這樣的難題。而橢圓曲線上的已知G和xG求x,是非常困難的,此即為橢圓曲線上的的離散對數問題。此處x即為私鑰,xG即為公鑰。

橢圓曲線加密演算法原理如下:

設私鑰、公鑰分別為k、K,即K = kG,其中G為G點。

公鑰加密:選擇隨機數r,將消息M生成密文C,該密文是一個點對,即:C = {rG, M+rK},其中K為公鑰

私鑰解密:M + rK - k(rG) = M + r(kG) - k(rG) = M其中k、K分別為私鑰、公鑰。

橢圓曲線簽名演算法,即ECDSA。設私鑰、公鑰分別為k、K,即K = kG,其中G為G點。

私鑰簽名:1、選擇隨機數r,計算點rG(x, y)。2、根據隨機數r、消息M的哈希h、私鑰k,計算s = (h + kx)/r。3、將消息M、和簽名{rG, s}發給接收方。

公鑰驗證簽名:1、接收方收到消息M、以及簽名{rG=(x,y), s}。2、根據消息求哈希h。3、使用發送方公鑰K計算:hG/s + xK/s,並與rG比較,如相等即驗簽成功。

原理如下:hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s= r(h+xk)G / (h+kx) = rG

假設要簽名的消息是一個字元串:「Hello World!」。DSA簽名的第一個步驟是對待簽名的消息生成一個消息摘要。不同的簽名演算法使用不同的消息摘要演算法。而ECDSA256使用SHA256生成256比特的摘要。
摘要生成結束後,應用簽名演算法對摘要進行簽名:
產生一個隨機數k
利用隨機數k,計算出兩個大數r和s。將r和s拼在一起就構成了對消息摘要的簽名。
這里需要注意的是,因為隨機數k的存在,對於同一條消息,使用同一個演算法,產生的簽名是不一樣的。從函數的角度來理解,簽名函數對同樣的輸入會產生不同的輸出。因為函數內部會將隨機值混入簽名的過程。

關於驗證過程,這里不討論它的演算法細節。從宏觀上看,消息的接收方從簽名中分離出r和s,然後利用公開的密鑰信息和s計算出r。如果計算出的r和接收到的r值相同,則表示驗證成功。否則,表示驗證失敗。

❷ 橢圓曲線加密(ECC)核心演算法的簡明介紹

網上對於橢圓曲線加密過程的介紹過於繁瑣,對於只想了解加密如何進行的人來說浪費時間,所以我這里只對關鍵計算步驟進行介紹,略去橢圓曲線的相關原理(網路一搜一大把)。

最最關鍵且基本只用到的是 Ep(a,b)的加法

對與橢圓曲線y^2 = x^3+ax+b(mod p) :

兩點P(x1,y1) Q(x2,y2),P≠-Q,則P+Q=(x3,y3)由以下演算法定義:

實際通信流程如下:

再對點M進行解碼就可以得到明文。上述流程中的加法即為Ep(a,b)的加法。

這個演算法實際是基於已知kG難解k實現的,簡單清晰。

❸ 比特幣源碼研讀一:橢圓曲線在比特幣密碼中的加密原理

參加比特幣源碼研讀班後首次寫作,看到前輩black寫的有關密鑰,地址寫的很好了,就選了他沒有寫的橢圓曲線,斗膽寫這一篇。

在密碼學上有兩種加密方式,分別是對稱密鑰加密和非對稱密鑰加密。

對稱加密:加密和解密使用的同樣的密鑰。

非對稱加密:加密和解密是使用的不同的密鑰。

二戰中圖靈破解德軍的恩尼格碼應該就是用的對稱加密,因為他的加密和解密是同一個密鑰。比特幣的加密是非對稱加密,而且用的是破解難度較大的橢圓曲線加密,簡稱ECC。

非對稱加密的通用原理就是用一個難以解決的數學難題做到加密效果,比如RSA加密演算法。RSA加密演算法是用求解一個極大整數的因數的難題做到加密效果的。就是說兩個極大數相乘,得到乘積很容易,但是反過來算數一個極大整數是由哪兩個數乘積算出來的就非常困難。

下面簡要介紹一下橢圓曲線加密演算法ECC。

首先橢圓曲線的通式是這個樣子的:

一般簡化為這個樣子:

()發公式必須吐槽一下,太麻煩了。)

其中

這樣做就排除了帶有奇點的橢圓曲線,可以理解為所有的點都有一條切線。

圖像有幾種,下面列舉幾個:[1]

橢圓曲線其實跟橢圓關系不大,也不像圓錐曲線那樣,是有圓錐的物理模型為基礎的。在計算橢圓曲線的周長時,需要用到橢圓積分,而橢圓曲線的簡化通式:

,周長公式在變換後有一項是這樣的:,平方之後兩者基本一樣。

我們大體了解了橢圓曲線,就會有一個疑問,這個東西怎麼加密的呢?也就是說橢圓曲線是基於怎樣的數學難題呢?在此之前還得了解一些最少必要知識:橢圓曲線加法,離散型橢圓曲線。

橢圓曲線加法

數學家門從普通的代數運算中,抽象出了加群(也叫阿貝爾群或交換群),使得在加群中,實數的演算法和橢圓曲線的演算法得到統一。

數學中的「群」是一個由我們定義了一種二元運算的集合,二元運算我們稱之為「加法」,並用符號「+」來表示。為了讓一個集合G成為群,必須定義加法運算並使之具有以下四個特性:

1. 封閉性:如果a和b是集合G中的元素,那麼(a + b)也是集合G中的元素。

2. 結合律:(a + b) + c = a + (b + c);

3. 存在單位元0,使得a + 0 = 0 + a =a;

4. 每個元素都有逆元,即:對於任意a,存在b,使得a + b = 0.

如果我們增加第5個條件:

5. 交換律: a + b = b + a

那麼,稱這個群為阿貝爾群。[1]

運演算法則:任意取橢圓曲線上兩點P、Q (若P、Q兩點重合,則做P點的切線)做直線交於橢圓曲線的另一點R』,過R』做y軸的平行線交於R。我們規定P+Q=R。(如圖)[2]

特別的,當P和Q重合時,P+Q=P+P=2P,對於共線的三點,P,Q,R』有P+Q+R』=0∞.

這里的0∞不是實數意義的0,而是指的無窮遠點(這里的無窮遠點就不細說了,你可以理解為這個點非常遙遠,遙遠到兩條平行線都在這一點相交了。具體介紹可以看參考文獻[2])。

注意這里的R與R』之間的區別,P+Q=R,R並沒有與P,Q共線,是R』與P,Q共線,不要搞錯了。

法則詳解:

這里的+不是實數中普通的加法,而是從普通加法中抽象出來的加法,他具備普通加法的一些性質,但具體的運演算法則顯然與普通加法不同。

根據這個法則,可以知道橢圓曲線無窮遠點O∞與橢圓曲線上一點P的連線交於P』,過P』作y軸的平行線交於P,所以有無窮遠點 O∞+ P = P 。這樣,無窮遠點 O∞的作用與普通加法中零的作用相當(0+2=2),我們把無窮遠點 O∞ 稱為零元。同時我們把P』稱為P的負元(簡稱,負P;記作,-P)。(參見下圖)

離散型橢圓曲線

上面給出的很好看的橢圓曲線是在實數域上的連續曲線,這個是不能用來加密的,原因我沒有細究,但一定是連續曲線上的運算太簡單。真正用於加密的橢圓曲線是離散型的。要想有一個離散型的橢圓曲線,先得有一個有限域。

域:在抽象代數中,域(Field)之一種可進行加、減、乘、除運算的代數結構。它是從普通實數的運算中抽像出來的。這一點與阿貝爾群很類似。只不過多了乘法,和與乘法相關的分配率。

域有如下性質[3]:

1.在加法和乘法上封閉,即域里的兩個數相加或相乘的結果也在這個域中。

2.加法和乘法符合結合律,交換率,分配率。

3.存在加法單位,也可以叫做零元。即存在元素0,對於有限域內所有的元素a,有a+0=a。

4.存在乘法單位,也可以叫做單位元。即存在元素1,對於有限域內所有的元素a,有1*a=a。

5.存在加法逆元,即對於有限域中所有的元素a,都存在a+(-a)=0.

6.存在乘法逆元,即對於有限域中所有的元素a,都存在a*=0.

在掌握了這些知識後,我們將橢圓曲線離散化。我們給出一個有限域Fp,這個域只有有限個元素。Fp中只有p(p為素數)個元素0,1,2 …… p-2,p-1;

Fp 的加法(a+b)法則是 a+b≡c (mod p);它的意思是同餘,即(a+b)÷p的余數與c÷p的余數相同。

Fp 的乘法(a×b)法則是 a×b≡c (mod p);

Fp 的除法(a÷b)法則是 a/b≡c (mod p);即 a×b∧-1≡c (mod p);(也是一個0到p-1之間的整數,但滿足b×b∧-1≡1 (mod p);

Fp 的單位元是1,零元是 0(這里的0就不是無窮遠點了,而是真正的實數0)。

下面我們就試著把

這條曲線定義在Fp上:

選擇兩個滿足下列條件的小於p(p為素數)的非負整數a、b,且a,b滿足

則滿足下列方程的所有點(x,y),再加上無窮遠點O∞ ,構成一條橢圓曲線。

其中 x,y屬於0到p-1間的整數,並將這條橢圓曲線記為Ep(a,b)。

圖是我手畫的,大家湊合看哈。不得不說,p取7時,別看只有10個點,但計算量還是很大的。

Fp上的橢圓曲線同樣有加法,法則如下:

        1. 無窮遠點 O∞是零元,有O∞+ O∞= O∞,O∞+P=P

        2. P(x,y)的負元是 (x,-y),有P+(-P)= O∞

3. P(x1,y1),Q(x2,y2)的和R(x3,y3) 有如下關系:

x3≡-x1-x2(mod p)

y3≡k(x1-x3)-y1(mod p)

其中若P=Q 則 k=(3+a)/2y1 若P≠Q,則k=(y2-y1)/(x2-x1)

通過這些法則,就可以進行離散型橢圓曲線的計算。

例:根據我畫的圖,(1,1)中的點P(2,4),求2P。

解:把點帶入公式k=(3*x∧2+a)/2y1

有(3*2∧2+1)/2*4=6(mod 7).

(注意,有些小夥伴可能算出13/8,這是不對的,這里是模數算數,就像鍾表一樣,過了12點又回到1點,所以在模為7的世界裡,13=6,8=1).

x=6*6-2-2=4(mod 7)

y=6*(2-4)-4=2 (mod 7)

所以2P的坐標為(2,4)

那橢圓曲線上有什麼難題呢?在模數足夠大的情況下,上面這個計算過程的逆運算就足夠難。

給出如下等式:

K=kG (其中 K,G為Ep(a,b)上的點,k為小於n(n是點G的階)的整數)不難發現,給定k和G,根據加法法則,計算K很容易;但給定K和G,求k就相對困難了。

這就是橢圓曲線加密演算法採用的難題。我們把點G稱為基點(base point),k稱為私鑰,K稱為公鑰。

現在我們描述一個利用橢圓曲線進行加密通信的過程[2]:

1、用戶A選定一條橢圓曲線Ep(a,b),並取橢圓曲線上一點,作為基點G。

2、用戶A選擇一個私鑰k,並生成公鑰K=kG。

3、用戶A將Ep(a,b)和點K,G傳給用戶B。

4、用戶B接到信息後 ,將待傳輸的明文編碼到Ep(a,b)上一點M(編碼方法很多,這里不作討論),並產生一個隨機整數r(r<n)。

5、用戶B計算點C1=M+rK;C2=rG。

6、用戶B將C1、C2傳給用戶A。

7、用戶A接到信息後,計算C1-kC2,結果就是點M。因為

C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M

再對點M進行解碼就可以得到明文。

整個過程如下圖所示:

密碼學中,描述一條Fp上的橢圓曲線,常用到六個參量:

T=(p,a,b,G,n,h),p 、a 、b 用來確定一條橢圓曲線,G為基點,n為點G的階,h 是橢圓曲線上所有點的個數m與n相除的整數部分

這幾個參量取值的選擇,直接影響了加密的安全性。參量值一般要求滿足以下幾個條件:

1、p 當然越大越安全,但越大,計算速度會變慢,200位左右可以滿足一般安全要求;

2、p≠n×h;

3、pt≠1 (mod n),1≤t<20;

4、4a3+27b2≠0 (mod p);

5、n 為素數;

6、h≤4。

200位位的一個數字,那得多大?而且還是素數,所以這種方式是非常安全的。而且再一次交易中,區塊被記錄下來只有10分鍾的時間,也就是說要想解決這個難題必須在10分鍾以內。即便有技術能夠在10分鍾以內破解了現在這個難度的加密演算法,比特幣社區還可以予以反制,提高破解難度。所以比特幣交易很安全,除非自己丟掉密鑰,否則不存在被破解可能。

第一次寫一個完全陌生的數學領域的知識,也許我有錯誤的地方,也許有沒講明白的地方,留言討論吧。總之寫完後對比特比系統的安全性表示很放心。

參考文獻

[1] 橢圓曲線密碼學簡介

[2] 什麼是橢圓曲線加密(ECC)

[3] 域(數學)維基網路

區塊鏈研習社源碼研讀班 高若翔

❹ 指令糾錯技術的工作原理

ECC(Error Correct Code,糾錯碼)是在原來的數據位上外加位來實現的,增加的位用來重建錯誤數據。在ECC糾錯體系中,如果數據為n個位元組,則外加的ECC位為log2n + 5。例如對於64位數據,需要外加log28 + 5 = 8個ECC位。
當出現一個存儲位錯誤時,ECC體系可以自動進行糾錯。當出現2個數據位錯誤時,可以檢測出來,但不能糾錯,這種行為通常稱作「單錯糾正/雙錯檢測(Single Error Correction/Double Error Detection ,簡稱SEC/DED)。一次存取中有2個以上的數據位出錯時,由於SEC/DED體系檢測不出來了,致使數據的完整性受損。採用這種結構的存儲器,當檢測出多位錯誤時,系統就會報告出現了致命故障(Fatal fault),之後系統崩潰。

❺ 簡要闡述RSA與ECC演算法的異同

都是非對稱密碼體系的代表
本質上最大的區別 就是RSA基於的單向陷門函數是 大數分解
ECC基於的是橢圓曲線上的 離散對數 問題
還有一個ECC在性能方面比RSA要好點

閱讀全文

與ecc演算法原理相關的資料

熱點內容
屏幕錄制app怎麼樣 瀏覽:684
義烏市聯DNS伺服器地址 瀏覽:669
App二級頁面怎麼做 瀏覽:956
提高pdf清晰度 瀏覽:979
伺服器網卡mac地址怎麼查 瀏覽:114
裁決之地伺服器為什麼這么卡 瀏覽:597
民生app怎麼查保險 瀏覽:467
單片機藍牙驅動代碼 瀏覽:467
php實現多選後公開 瀏覽:645
map中的值為數組的怎麼編程 瀏覽:261
加密貨幣怎麼登錄 瀏覽:1002
如何看本機伺服器實例名 瀏覽:388
變頻器加密密碼 瀏覽:796
美國銀行加密市場 瀏覽:384
我的世界伺服器如何tp玩家 瀏覽:26
app下載統計怎麼找 瀏覽:264
荔枝app怎麼看適合自己的發型 瀏覽:371
魔獸世界client文件夾 瀏覽:541
解壓音樂輕松入睡 瀏覽:272
c盤文件夾卡頓怎麼辦 瀏覽:450