導航:首頁 > 源碼編譯 > 推薦演算法中的實時推薦

推薦演算法中的實時推薦

發布時間:2024-01-02 12:24:54

A. 推薦演算法綜述

推薦系統的目的是通過推薦計算幫助用戶從海量的數據對象中選擇出用戶最有可能感興趣的對象。涉及三個基本內容:目標用戶、待推薦項目以及推薦演算法,基本流程為:描述為用戶模型構建、項目模型建立以及推薦演算法處理三個基本流程;

為了能夠為用戶提供准確的推薦服務,推薦系統需要為用戶構建用戶模型,該模型能夠反映用戶動態變化的多層次興趣偏好,有助於推薦系統更好的理解用戶的特徵和需求。構建用戶模型通常需要經歷三個流程:用戶數據收集,用戶模型表示以及用戶模型更新。

(1)用戶數據收集:用戶數據是用戶模型構建的基礎,用戶數據收集的方式一般有顯示方式獲取和隱式方式獲取兩種。
顯示方式獲取的數據是用戶特徵屬性和興趣偏好的直接反映,所獲得的信息數據是較為客觀全面的,比如用戶在注冊時包含的性別、年齡等信息可以直接表示出用戶的基本人口學信息和興趣信息,用戶對項目的評分可以反映出用戶的偏好。但顯示獲取的方式最大的缺陷是其實時性較差,並且具有很強的侵襲性。
隱式方式獲取用戶數據是在不幹擾用戶的前提下,採集用戶的操作行為數據,並從中挖掘出用戶的興趣偏好。用戶的很多操作行為都能反映出用戶的喜好,比如用戶瀏覽網頁的速度、用戶查詢的關鍵字等,推薦系統在不影響用戶使用系統的情況下,通過行為日誌挖掘出用戶的偏好。隱式獲取方式由於具有較好的實時性和靈活性和較弱的侵襲性,己經成為推薦系統中主要的用戶數據採集方式。

(2)用戶模型表示:用戶模型是從用戶數據中歸納出的推薦系統所理解的用戶興趣偏好的結構化形式。
a 基於內容關鍵詞表示;
b 基於評分矩陣表示;
(3)用戶模型更新:推薦系統面臨的問題之一是興趣漂移,興趣漂移的根本原因在於用戶的興趣會隨時間發生改變。為了使用戶模型夠准確的代表用戶的興趣,推薦系統需要根據最新的用戶數據對用戶模型進行更新。

目前項目模型主要通過基於內容和基於分類這兩類方式來建立。基於內容的方式是以項目本身內容為基礎,向量空間模型表示是目前御用最為廣泛的基於內容的方式。

基於分類的方式是根據項目的內容或者屬性,將項目劃分到一個或者幾個類別中,利用類別信息來表示項目,這種方法可以很方便地將項目推薦給對某一類別感興趣的用戶。常見的分類演算法有樸素貝葉斯演算法和KNN分類演算法等。

推薦系統實現的核心是其使用的推薦演算法。針對不同的使用環境及其系統的數據特徵,選取不同的推薦演算法,可以在本質上提高推薦系統的推薦效果。根據不同的分類標准,推薦演算法出現了有很多不同的分類方法,本文採用了比較普遍的分類方法。

推薦系統通常被分為基於內容的推薦演算法、協同過濾推薦演算法以及混合模型推薦演算法三大類。

基於內容的推薦演算法,其本質是對物品或用戶的內容進行分析建立屬性特徵。系統根據其屬性特徵,為用戶推薦與其感興趣的屬性特徵相似的信息。演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶。

CBF(Content-based Filter Recommendations)演算法的主要思想是將與用戶之前感興趣的項目的內容相似的其他項目推薦給用戶,比如用戶喜歡Java開發的書籍,則基於內容過濾演算法將用戶尚未看過的其他Java開發方面的書籍推薦給用戶。因此,該推薦演算法的關鍵部分是計算用戶模型和項目模型之間的內容相似度,相似度的計算通常採用餘弦相似性度量。

基於內容的推薦過程一般分為以下三個模塊:
(1)特徵提取模塊:由於大多數物品信息是非結構化的,需要為每個物品(如產品、網頁、新聞、文檔等)抽取出一些特徵屬性,用某一恰當的格式表示,以便下一階段的處理。如將新聞信息表示成關鍵詞向量,此種表示形式將作為下一模塊(屬性特徵學習模塊)的輸入。

(2)特徵學習模塊:通過用戶的歷史行為數據特徵,機器學習出用戶的興趣特徵模型。本模塊負責收集代表用戶喜好的數據信息,並泛化這些數據,用於構建用戶特徵模型。通常使用機器學習的泛化策略,來將用戶喜好表示為興趣模型。

(3)推薦模塊:該模塊利用上一階段得到的用戶特徵模型,通過對比用戶興趣模型與帶推薦物品的特徵相似度,為用戶推薦與其興趣相似度較高的物品,從而達到個性化推薦的目的。該模塊一般採用計算用戶興趣向量與待推薦物品特徵向量的相似度來進行排序,將相似度較高的物品推薦給相應用戶。計算相似度有多種方法,如皮爾遜相關系數法、夾角餘弦法、Jaccard相關系數法等。

協同過濾演算法(Collaborative Filtering)是於內容無關的,即不需要額外獲取分析用戶或物品的內容屬性特徵。是基於用戶歷史行為數據進行推薦的演算法。其通過分析用戶與物品間的聯系來尋找新的用戶與物品間的相關性。

該演算法演算法通常有兩個過程,一個過程是預測,另一個過程是推薦。主流的協同過濾演算法包括三種:基於用戶的協同過濾(User-Based Collaborative Filtering,UBCF)、基於項目的協同過濾(Item-Based Collaborative Filtering, IBCF)和基於模型的協同過濾(Model-Based Collaborative Filtering, MBCF)

(1)基於用戶的協同過濾演算法
基於用戶的協同過濾推薦演算法,先通過用戶歷史行為數據找到和用戶u相似的用戶,將這些用戶感興趣的且u沒有點擊過的物品推薦給用戶。
演算法主要包括以下兩個步驟:
(1)找到與目標用戶喜好相似的鄰居用戶集合。
(2)在鄰居用戶集合中,為用戶推薦其感興趣的物品。

UBCF的基本思想是將與當前用戶有相同偏好的其他用戶所喜歡的項目推薦給當前用戶。一個最典型的例子就是電影推薦,當我們不知道哪一部電影是我們比較喜歡的時候,通常會詢問身邊的朋友是否有好的電影推薦,詢問的時候我們習慣於尋找和我們品味相同或相似的朋友。

(2)基於物品的協同過濾演算法
基於物品的協同過濾演算法(Item-based Collaborative Filtering)其主要思想是,為用戶推薦那些與他們之前喜歡或點擊過的物品相似的物品。不過基於物品的協同過濾演算法並不是利用物品的內容屬性特徵來計算物品之間的相似度的。該類演算法是利用用戶的歷史行為數據計算待推薦物品之間的相似度。在該類演算法中,如果喜歡物品A的用戶大都也喜歡物品B,那麼就可以認為物品A和物品B之間的相似度很高。
演算法分為以下兩個步驟:
(1)根據用戶歷史行為數據,計算物品間的相似度。
(2)利用用戶行為和物品間的相似度為用戶生成推薦列表。

IBCF演算法是亞馬遜在2003年發表的論文中首次提出,該演算法的基本思想是根據所有用戶的歷史偏好數據計算項目之間的相似性,然後把和用戶喜歡的項目相類似的並且用戶還未選擇的其他項目推薦給用戶,例如,假設用戶喜歡項目a,則用戶喜歡與項目a高度相似且還未被用戶選擇的項目b的可能性非常大,因此將項目b推薦給用戶。

UBCF和IBCF都屬於基於內存的協同過濾演算法,這類演算法由於充分發揮了用戶的評分數據,形成全局推薦,因此具有較高的推薦質量。但隨著用戶和項目的規模增長,這類演算法的計算時間大幅上升,使得系統的性能下降。針對該問題,研究人員提出將數據挖掘中的模型和CF演算法結合,提出了基於模型的協同過濾演算法(MBCF) 。

MBCF演算法利用用戶歷史評分數據建立模型,模型建立的演算法通常有奇異值分解、聚類演算法、貝葉斯網路、關聯規則挖掘等,且通常是離線完成。由於MBCF通常會對原始評分值做近似計算,通過犧牲一定的准確性來換取系統性能,因此MBCF的推薦質量略差於UBCF和IBCF。

由於基於內容的推薦演算法和協同過濾推薦演算法都有其各自的局限性,混合推薦演算法應運而生。混合推薦演算法根據不同的應用場景,有多
種不同的結合方式,如加權、分層和分區等。

目前使用的混合推薦演算法的思想主要可以分成以下幾類:
(1)多個推薦演算法獨立運行,獲取的多個推薦結果以一定的策略進行混合,例如為每一個推薦結果都賦予一個權值的加權型混合推薦演算法和將各個推薦結果取TOP-N的交叉混合推薦演算法。

(2)將前一個推薦方法產出的中間結果或者最終結果輸出給後一個推薦方法,層層遞進,推薦結果在此過程中會被逐步優選,最終得到一個精確度比較高的結果。

(3)使用多種推薦演算法,將每種推薦演算法計算過程中產生的相似度值通過權重相加,調整每個推薦演算法相似度值的權重,以該混合相似度值為基礎,選擇出鄰域集合,並結合鄰域集合中的評估信息,得出最優的推薦結果。

BP (Back Propagation)神經網路是目前應用最廣泛的神經網路模型之一,是一種按誤差逆傳播演算法訓練的多層前饋網路。

BP神經網路模型包括輸入層、隱藏層和輸出層,每一層由一個或多個神經元組成,其結構圖如圖2-3所示。BP神經網路擁有很強的非線性映射能力和自學習、自適應能力,網路本身結構的可變性,也使其十分靈活,一個三層的BP神經網路能夠實現對任意非線性函數進行逼近。

BP神經網路的訓練過程通常分為3個過程,依次分別為數據初始化過程、正向推演計算過程以及反向權重調整過程。數據初始化是BP神經網路能夠進行有效訓練的前提,該過程通常包括輸入數據進行歸一化處理和初始權重的設置;正向推演計算是數據沿著網路方向進行推演計算;反向權重調整則是將期望輸出和網路的實際輸出進行對比,從輸出層開始,向著輸入層的方向逐層計算各層中各神經元的校正差值,調整神經元的權重。正向推演計算和反向權重調整為對單個訓練樣本一次完整的網路訓練過程,經過不斷的訓練調整,網路的實際輸出越來越趨近於期望輸出,當網路輸出到達預期目標,整個訓練過程結束。

TF-IDF(Term Frequency-Inverse Document Frequency,詞頻一逆文檔)是文本處理中常用的加權技術,廣泛應用於信息檢索、搜索引擎等領域。
TF-IDF的主要思想是:如果一個關鍵詞在文檔中出現的頻率很高,而在其他文檔中出現次數較少,則該關鍵詞被認為具有較強的代表性,即該關鍵詞通過TF-IDF計算後有較高的權重。

TextRank演算法,是一種用於文本關鍵詞排序的演算法,頁排序演算法PageRank。
PageRank基本思想是將每個網頁看成一個節點,網頁中的鏈接指向看成一條有向邊,一個網頁節點的重要程度取決於鏈接指向該網頁節點的其他節點的數量和重要權值,該過程描述如下:讓每一個網頁對其所包含的鏈接指向的網頁進行迭代投票,每次迭代投票過程中票的權重取決於網頁當前擁有的票數,當投票結果收斂或者達到指定的迭代次數時,每個網頁所獲得票數即為網頁重要程度權值。

TextRank演算法相比於TF-IDF最大的優點是TextRank是一種無監督的學習,因此不會受限於文本的主題,並且無需大規模的訓練集,可以針對單一文本進行快速的關鍵詞的權重計算。

B. 推薦演算法簡介

在這個時代,無論是信息消費者還是信息生產者都遇到了很大的挑戰:作為信息消費者,如何從大量信息中找到自己感興趣的信息是一件非常困難的事情;作為信息生產者, 如何讓自己生產的信息脫穎而出,受到廣大用戶的關注,也是一件非常困難的事情。推薦系統就是解決這一矛盾的重要工具。推薦系統的任務就是聯系用戶和信息,一方面幫助用戶發現對自己有價值的信息,另一方面讓信息能夠展現在對它感興趣的用戶面前,從而實現信息消費者和信息 生產者的雙贏。和搜索引擎不同的是,推薦系統不需要用戶提供明確的需求,而是通過分析用戶的歷史行為給用 戶的興趣建模,從而主動給用戶推薦能夠滿足他們興趣和需求的信息 個性化推薦的成功需要兩個條件。第一是存在 信息過載 ,因為如果用戶可以很容易地從所有物品中找到喜歡的物品,就不需要個性化推薦。第二用 戶大部分時候沒有特別明確的需求 ,因為用戶沒有明確的需求,可以直接通過搜索引擎找到感興趣的物品。

一個完整的推薦系統一般存在3個參與方:用戶、物品提供者和提供推薦系統的網站。以圖書推薦為例, 首先,推薦系統需要滿足用戶的需求,給用戶推薦那些令他們感興趣的圖書。其次,推薦系統要讓各出版社的書都能夠被推薦給對其感興趣的用戶,而不是只推薦幾個大型出版社的書。最後, 好的推薦系統設計,能夠讓推薦系統本身收集到高質量的用戶反饋,不斷完善推薦的質量,增加 用戶和網站的交互,提高網站的收入。因此在評測一個推薦演算法時,需要同時考慮三方的利益, 一個好的推薦系統是能夠令三方共贏的系統。

推薦系統中,主要有3種評測推薦效果的實驗方法,即離線實驗(offline experiment)、用戶調查(user study)和在線實驗(online experiment)。

2.1 離線實驗

離線實驗的方法一般由如下幾個步驟構成: (1) 通過日誌系統獲得用戶行為數據,並按照一定格式生成一個標準的數據集; (2) 將數據集按照一定的規則分成訓練集和測試集; (3) 在訓練集上訓練用戶興趣模型,在測試集上進行預測; (4) 通過事先定義的離線指標評測演算法在測試集上的預測結果。

從上面的步驟可以看到,推薦系統的離線實驗都是在數據集上完成的,也就是說它不需要一個實際的系統來供它實驗,而只要有一個從實際系統日誌中提取的數據集即可。這種實驗方法的 好處是不需要真實用戶參與,可以直接快速地計算出來,從而方便、快速地測試大量不同的演算法。它的主要缺點是無法獲得很多商業上關注的指標,如點擊率、轉化率等,而找到和商業指標非常相關的離線指標也是很困難的事情

2.2 用戶調查

3.3 在線實驗

在完成離線實驗和必要的用戶調查後,可以將推薦系統上線做 AB測試 ,將它和舊的演算法進行比較。 AB測試 是一種很常用的在線評測演算法的實驗方法。它通過一定的規則將用戶隨機分成幾組,並對不同組用戶採取不同的演算法,然後通過統計不同組用戶的各種不同的評測指標比較不同演算法的好壞。 AB測試的優點是可以公平獲得不同演算法實際在線時的性能指標,包括商業上關注的指標。 AB測試的缺點主要是周期比較長,必須進行長期的實驗才能得到可靠的結果。因此一般不會用 AB測試測試所有的演算法,而只是用它測試那些在離線實驗和用戶調查中表現很好的演算法。其次, 一個大型網站的AB測試系統的設計也是一項復雜的工程。

一般來說,一個新的推薦演算法最終上線,需要完成上面所說的3個實驗。 1)首先,需要通過離線實驗證明它在很多離線指標上優於現有的演算法。 2)然後,需要通過用戶調查確定它的用戶滿意度不低於現有的演算法。 3)最後,通過在線的AB測試確定它在我們關心的指標上。

本節將介紹各種推薦系統的評測指標。這些評測指標可用於評價推薦系統各方面的性能。這 些指標有些可以定量計算,有些只能定性描述,有些可以通過離線實驗計算,有些需要通過用戶 調查獲得,還有些只能在線評測。

(1) 用戶滿意度

用戶作為推薦系統的重要參與者,其滿意度是評測推薦系統的最重要指標。但是,用戶滿意度沒有辦法離線計算,只能通過用戶調查或者在線實驗獲得。

在在線系統中,用戶滿意度主要通過一些 對用戶行為的統計得到 。比如在電子商務網站中,用戶如果購買了推薦的商品,就表示他們在一定程度上滿意。因此,我們可以 利用購買率度量用 戶的滿意度 。此外,有些網站會通過設計一些用戶 反饋界面收集用戶滿意度 。比如在視頻網站中,都有對推薦結果滿意或者不滿意的 反饋按鈕 ,通過統計兩種按鈕的單擊情況就可以度量系統的用戶滿意度。更一般的情況下,我們可以用 點擊率、用戶停留時間和轉化率等指標度量 用戶的滿意度。

(2) 預測准確度

預測准確度度量一個推薦系統或者推薦演算法預測用戶行為的能力。這個指標是最重要的推薦系統離線評測指標

在計算該指標時需要有一個離線的數據集,該數據集包含用戶的歷史行為記錄。然後,將該數據集通過時間分成訓練集和測試集。最後,通過在訓練集上建立用戶的行為和興趣模型預測用戶在測試集上的行為,並計算預測行為和測試集上實際行為的重合度作為預測准確度。 預測准確度指標有分為以下幾種:

評分預測:

預測用戶對物品評分的行為成為評分預測,在評分預測中,預測准確度一般通過均方根誤差RMSE和平均絕對誤差MAE計算,對於測試集中的一個用戶u和物品i,令[圖片上傳失敗...(image-62a797-1560412790460)] 是用戶u對物品i的實際評分,而[圖片上傳失敗...(image-28cfbc-1560412790460)] 是推薦演算法給出的預測評分,那麼RMSE定義為:

其中T為樣本個數

MAE採用絕對值計算預測誤差,它的定義為:

TopN推薦

網站在提供推薦服務時,一般是給用戶一個個性化的推薦列表,這種推薦叫做TopN推薦。TopN推薦的預測准確率一般通過准確率(precision)/召回率(recall)度量。 令R(u)是根據用戶在訓練集上的行為給用戶作出的推薦列表,而T(u)是用戶在測試集上的行為列表。那麼,推薦結果的召回率定義為:

推薦結果准確率定義:

(3) 覆蓋率

覆蓋率(coverage)描述一個推薦系統對物品長尾的發掘能力。覆蓋率有不同的定義方法,最簡單的定義為推薦系統能夠推薦出來的物品占總物品集合的比例。假設系統的用戶集合U,推薦系統給每個用戶推薦一個長度為N的物品集合R(u)。那麼推薦系統的覆蓋率可以通過下面的公式計算:

I為總物品數

此外,從上面的定義也可以看到,熱門排行榜的推薦覆蓋率是很低的,它只會 推薦那些熱門的物品,這些物品在總物品中占的比例很小。一個好的推薦系統不僅需要有比較高的用戶滿意度,也要有較高的覆蓋率。

但是上面的定義過於粗略。覆蓋率為100%的系統可以有無數的物品流行度分布。為了更細致地描述推薦系統發掘長尾的能力,需要統計推薦列表中不同物品出現次數的分布。如果所有的 物品都出現在推薦列表中,且出現的次數差不多,那麼推薦系統發掘長尾的能力就很好。因此, 可以通過研究物品在推薦列表中出現次數的分布描述推薦系統挖掘長尾的能力。如果這個分布比 較平,那麼說明推薦系統的覆蓋率較高,而如果這個分布較陡峭,說明推薦系統的覆蓋率較低。 在資訊理論和經濟學中有兩個著名的指標可以用來定義覆蓋率。第一個是信息熵:

其中:n代表推薦列表中物品類別個數,p(i)代表每個類別的所佔的比率

第二個指標是基尼系數:

(4) 多樣性

為了滿足用戶廣泛的興趣,推薦列表需要能夠覆蓋用戶不同的興趣領域,即推薦結果需要具有多樣性。多樣性推薦列表的好處用一句俗話表示就是(不在一棵樹上弔死)。盡管用戶的興趣在較長的時間跨度中是一樣的。但具體到用戶訪問推薦系統的某一時刻,其興趣往往是單一的,那麼如果推薦列表只能覆蓋用戶的一個興趣點,而這個興趣點不是用戶這個時刻的興趣點,推薦結果就不會讓用戶滿意。反之如果推薦列表表較多樣,覆蓋用戶絕大多數的興趣點,那麼久會增加用戶找到感興趣物品的概率。因此給用戶的推薦列表也需要滿足用戶廣泛的興趣,即具有多樣性。

多樣性描述了推薦列表中物品兩兩之間的不相似性,因此,多樣性和相似性是對應的。假設s(i, j) ∈Î[0,1] 定義了物品i和j之間的相似度,那麼用戶u的推薦列表R(u)的多樣性定義如下:

而推薦系統的整體多樣性可以定義為所有用戶推薦列表多樣性的平均值:

(5) 新穎性

新穎的推薦是指給用戶推薦那些他們以前沒有聽說過的物品。在一個網站中 實現新穎性 的最簡單辦法是,把那些用戶之前在網站中對其有過行為的物品從推薦列表中過濾掉。比如在一個視 頻網站中,新穎的推薦不應該給用戶推薦那些他們已經看過、打過分或者瀏覽過的視頻。 評測新穎度的最簡單方法是利用推薦結果的平均流行度,因為越不熱門的物品越 可能讓用戶覺得新穎。因此,如果推薦結果中物品的平均熱門程度較低,那麼推薦結果就可能有比較高的新穎性。

(6) 驚喜度

驚喜度(serendipity)是最近這幾年推薦系統領域最熱門的話題。如果推薦結果和用戶的歷史興趣不相似,但卻讓用戶覺得滿意,那麼就可以說推薦結果的驚喜度很高,而推薦的新穎性僅僅取決於用戶是否聽說過這個推薦結果。提高推薦驚喜度需要提高推薦結果的用戶滿意度,同時降低推薦結果和用戶歷史興趣的相似度。

(7) 信任度

度量推薦系統的信任度只能通過問卷調查的方式,詢問用戶是否信任推薦系統的推薦結果。 提高推薦系統的信任度主要有兩種方法。首先需要增加推薦系統的透明度(transparency), 而增加推薦系統透明度的主要辦法是提供推薦解釋。只有讓用戶了解推薦系統的運行機制,讓用 戶認同推薦系統的運行機制,才會提高用戶對推薦系統的信任度。其次是考慮用戶的社交網路 信息,利用用戶的好友信息給用戶做推薦,並且用好友進行推薦解釋。這是因為用戶對他們的 好友一般都比較信任,因此如果推薦的商品是好友購買過的,那麼他們對推薦結果就會相對比較信任

(8) 實時性

在很多網站中,因為物品(新聞、微博等)具有很強的時效性,所以需要在物品還具有時效 性時就將它們推薦給用戶。 推薦系統的實時性包括兩個方面。首先,推薦系統需要實時地更新推薦列表來滿足用戶新的 行為變化。實時性的第二個方面是推薦系統需要能夠將新加入系統的物品推薦給用戶。這主要考驗了推 薦系統處理物品冷啟動的能力。

(9) 健壯性

健壯性(即robust,魯棒 性)指標衡量了一個推薦系統抗擊作弊的能力。演算法健壯性的評測主要利用模擬攻擊。首先,給定一個數據集和一個演算法,可以用這個演算法 給這個數據集中的用戶生成推薦列表。然後,用常用的攻擊方法向數據集中注入雜訊數據,然後 利用演算法在注入雜訊後的數據集上再次給用戶生成推薦列表。最後,通過比較攻擊前後推薦列表 的相似度評測演算法的健壯性。如果攻擊後的推薦列表相對於攻擊前沒有發生大的變化,就說明算 法比較健壯

(10) 商業目標

很多時候,網站評測推薦系統更加註重網站的商業目標是否達成,而商業目標和網站的盈利模式是息息相關的

(11) 總結

上一節介紹了很多評測指標,但是在評測系統中還需要考慮評測維度,比如一個推薦演算法, 雖然整體性能不好,但可能在某種情況下性能比較好,而增加評測維度的目的就是知道一個演算法 在什麼情況下性能最好。這樣可以為融合不同推薦演算法取得最好的整體性能帶來參考。

一般來說,評測維度分為如下3種。 1) 用戶維度 :主要包括用戶的人口統計學信息、活躍度以及是不是新用戶等。 2) 物品維度 :包括物品的屬性信息、流行度、平均分以及是不是新加入的物品等。 3) 時間維度 :包括季節,是工作日還是周末,是白天還是晚上等。 如果能夠在推薦系統評測報告中包含不同維度下的系統評測指標,就能幫我們全面地了解推 薦系統性能,找到一個看上去比較弱的演算法的優勢,發現一個看上去比較強的演算法的缺點。

C. 07_推薦系統演算法詳解

     基於人口統計學的推薦與用戶畫像、基於內容的推薦、基於協同過濾的推薦。

1、基於人口統計學的推薦機制( Demographic-based Recommendation)是一種最易於實現的推薦方法,它只是簡單的根據系統用戶的基本信息發現用戶的相關程度,然後將相似用戶喜愛的其他物品推薦給當前用戶。

2、對於沒有明確含義的用戶信息(比如登錄時間、地域等上下文信息),可以通過聚類等手段,給用戶打上分類標簽。

3、對於特定標簽的用戶,又可以根據預設的規則(知識)或者模型,推薦出對應的物品。

4、用戶信息標簽化的過程一般又稱為 用戶畫像 ( User Profiling)。

(1)用戶畫像( User Profile)就是企業通過收集與分析消費者社會屬性、生活習慣、消費行為等主要信息的數據之後,完美地抽象出一個用戶的商業全貌作是企業應用大數據技術的基本方式。

(2)用戶畫像為企業提供了足夠的信息基礎,能夠幫助企業快速找到精準用戶群體以及用戶需求等更為廣泛的反饋信息。

(3)作為大數據的根基,它完美地抽象出一個用戶的信息全貌,為進一步精準、快速地分析用戶行為習慣、消費習慣等重要信息,提供了足夠的數據基礎。

1、 Content- based Recommendations(CB)根據推薦物品或內容的元數據,發現物品的相關性,再基於用戶過去的喜好記錄,為用戶推薦相似的物品。

2、通過抽取物品內在或者外在的特徵值,實現相似度計算。比如一個電影,有導演、演員、用戶標簽UGC、用戶評論、時長、風格等等,都可以算是特徵。

3、將用戶(user)個人信息的特徵(基於喜好記錄或是預設興趣標簽),和物品(item)的特徵相匹配,就能得到用戶對物品感興趣的程度。在一些電影、音樂、圖書的社交網站有很成功的應用,有些網站還請專業的人員對物品進行基因編碼/打標簽(PGC)。

4、 相似度計算:

5、對於物品的特徵提取——打標簽(tag)

        - 專家標簽(PGC)

        - 用戶自定義標簽(UGC)

        - 降維分析數據,提取隱語義標簽(LFM)

     對於文本信息的特徵提取——關鍵詞

        - 分詞、語義處理和情感分析(NLP)

        - 潛在語義分析(LSA)

6、 基於內容推薦系統的高層次結構

7、 特徵工程

(1)特徵( feature):數據中抽取出來的對結果預測有用的信息。

         特徵的個數就是數據的觀測維度。

         特徵工程是使用專業背景知識和技巧處理數據,使得特徵能在機器學習演算法上發揮更好的作用的過程。

         特徵工程一般包括特徵清洗(采樣、清洗異常樣本),特徵處理和特徵選擇。

         特徵按照不同的數據類型分類,有不同的特徵處理方法:數值型、類別型、時間型、統計型。

(2)數值型特徵處理

        用連續數值表示當前維度特徵,通常會對數值型特徵進行數學上的處理,主要的做法是歸一化和離散化。

        * 幅度調整歸一化:

            特徵與特徵之間應該是平等的,區別應該體現在 特徵內部 。

            例如房屋價格和住房面積的幅度是不同的,房屋價格可能在3000000~15000000(萬)之間,而住房面積在40-300(平方米)之間,那麼明明是平等的兩個特徵,輸入到相同的模型中後由於本身的幅值不同導致產生的效果不同,這是不合理的

                        

        * 數值型特徵處理——離散化

        離散化的兩種方式:等步長——簡單但不一定有效;等頻——min -> 25% -> 75% -> max

        兩種方法對比:

            等頻的離散化方法很精準,但需要每次都對數據分布進行一遍從新計算,因為昨天用戶在淘寶上買東西的價格分布和今天不一定相同,因此昨天做等頻的切分點可能並不適用,而線上最需要避免的就是不固定,需要現場計算,所以昨天訓練出的模型今天不一定能使用。

            等頻不固定,但很精準,等步長是固定的,非常簡單,因此兩者在工業上都有應用。

(3) 類別型特徵處理

        類別型數據本身沒有大小關系,需要將它們編碼為數字,但它們之間不能有預先設定的大小關系,因此既要做到公平,又要區分開它們,那麼直接開辟多個空間。

        One-Hot編碼/啞變數:One-Hot編碼/啞變數所做的就是將類別型數據平行地展開,也就是說,經過One-Hot編碼啞變數後,這個特徵的空間會膨脹。

(4) 時間型特徵處理

        時間型特徵既可以做連續值,又可以看做離散值。

        連續值:持續時間(網頁瀏覽時長);間隔時間(上一次購買/點擊離現在的時間間隔)。

        離散值:一天中哪個時間段;一周中的星期幾;一年中哪個月/星期;工作日/周末。

(5) 統計型特徵處理

        加減平均:商品價格高於平均價格多少,用戶在某個品類下消費超過多少。

        分位線:商品屬於售出商品價格的分位線處。

        次序性:商品處於熱門商品第幾位。

        比例類:電商中商品的好/中/差評比例。

8、 推薦系統常見反饋數據 :

9、 基於UGC的推薦

     用戶用標簽來描述對物品的看法,所以用戶生成標簽(UGC)是聯系用戶和物品的紐帶,也是反應用戶興趣的重要數據源。

    一個用戶標簽行為的數據集一般由一個三元組(用戶,物品,標簽)的集合表示,其中一條記錄(u,i,b)表示用戶u給物品打上了標簽b。

    一個最簡單的演算法:

        - 統計每個用戶最常用的標簽

        - 對於每個標簽,統計被打過這個標簽次數最多的物品

        - 對於一個用戶,首先找到他常用的標簽,然後找到具有這些標簽的最熱門的物品,推薦給他

        - 所以用戶u對物品i的興趣公式為 ,其中 使用戶u打過標簽b的次數, 是物品i被打過標簽b的次數。

    簡單演算法中直接將用戶打出標簽的次數和物品得到的標簽次數相乘,可以簡單地表現出用戶對物品某個特徵的興趣。

    這種方法傾向於給熱門標簽(誰都會給的標簽,如「大片」、「搞笑」等)、熱門物品(打標簽人數最多)比較大的權重,如果一個熱門物品同時對應著熱門標簽,那它就會「霸榜」,推薦的個性化、新穎度就會降低。

    類似的問題,出現在新聞內容的關鍵字提取中。比如以下新聞中,哪個關鍵字應該獲得更高的權重?

10、 TF-IDF:詞頻逆文檔頻率 ( Term Frequency- -Inverse Document Frequency,TF-DF)是一種用於資訊檢索與文本挖掘的常用加權技術。

        TFDF是一種統計方法,用以評估一個字詞對於一個文件集或一個語料庫中的其中份文件的重要程度。字詞的重要性隨著它在文件中出現的次數成正比增加,但同時會隨著它在語料庫中出現的頻率成反比下降。

                    TFIDF=TF IDF

         TF-IDF的主要思想是 :如果某個詞或短語在一篇文章中出現的頻率TF高,並且在其他文章中很少出現,則認為此詞或者短語具有很好的類別區分能力,適合用來分類。

        TF-DF加權的各種形式常被搜索引擎應用,作為文件與用戶查詢之間相關程度的度量或評級。

         詞頻( Term Frequency,TF) :指的是某一個給定的詞語在該文件中出現的頻率。這個數字是對詞數的歸一化,以防止偏向更長的文件。(同一個詞語在長文件里可能會比短文件有更高的詞數,而不管該詞語重要與否。) ,其中 表示詞語 i 在文檔 j 中出現的頻率, 表示 i 在 j 中出現的次數, 表示文檔 j 的總詞數。

         逆向文件頻率( Inverse Document Frequency,IDF) :是一個詞語普遍重要性的度量,某一特定詞語的IDF,可以由總文檔數目除以包含該詞語之文檔的數目,再將得到的商取對數得到 ,其中 表示詞語 i 在文檔集中的逆文檔頻率,N表示文檔集中的文檔總數, 表示文檔集中包含了詞語 i 的文檔數。

(11) TF-IDF對基於UGC推薦的改進 : ,為了避免熱門標簽和熱門物品獲得更多的權重,我們需要對「熱門進行懲罰。

          借鑒TF-IDF的思想,以一個物品的所有標簽作為「文檔」,標簽作為「詞語」,從而計算標簽的「詞頻」(在物品所有標簽中的頻率)和「逆文檔頻率」(在其它物品標簽中普遍出現的頻率)。

           由於「物品i的所有標簽」 應該對標簽權重沒有影響,而 「所有標簽總數」 N 對於所有標簽是一定的,所以這兩項可以略去。在簡單演算法的基礎上,直接加入對熱門標簽和熱門物品的懲罰項: ,其中, 記錄了標簽 b 被多少個不同的用戶使用過, 記錄了物品 i 被多少個不同的用戶打過標簽。

(一)協同過濾(Collaborative Filtering, CF)

1、基於協同過濾(CF)的推薦:基於內容( Content based,CB)主要利用的是用戶評價過的物品的內容特徵,而CF方法還可以利用其他用戶評分過的物品內容。

    CF可以解決CB的一些局限:

         - 物品內容不完全或者難以獲得時,依然可以通過其他用戶的反饋給出推薦。

        - CF基於用戶之間對物品的評價質量,避免了CB僅依賴內容可能造成的對物品質量判斷的干。

        - CF推薦不受內容限制,只要其他類似用戶給出了對不同物品的興趣,CF就可以給用戶推薦出內容差異很大的物品(但有某種內在聯系)

    分為兩類:基於近鄰和基於模型。

2、基於近鄰的推薦系統:根據的是相同「口碑」准則。是否應該給Cary推薦《泰坦尼克號》?

(二)基於近鄰的協同過濾

1、 基於用戶(User-CF): 基於用戶的協同過濾推薦的基本原理是,根據所有用戶對物品的偏好,發現與當前用戶口味和偏好相似的「鄰居」用戶群,並推薦近鄰所偏好的物品。

     在一般的應用中是採用計算「K-近鄰」的演算法;基於這K個鄰居的歷史偏好信息,為當前用戶進行推薦。

    User-CF和基於人口統計學的推薦機制:

        - 兩者都是計算用戶的相似度,並基於相似的「鄰居」用戶群計算推薦。

        - 它們所不同的是如何計算用戶的相似度:基於人口統計學的機制只考慮用戶本身的特徵,而基於用戶的協同過濾機制可是在用戶的歷史偏好的數據上計算用戶的相似度,它的基本假設是,喜歡類似物品的用戶可能有相同或者相似的口味和偏好。

2、基於物品(Item-CF):基於項目的協同過濾推薦的基本原理與基於用戶的類似,只是使用所有用戶對物品的偏好,發現物品和物品之間的相似度,然後根據用戶的歷史偏好信息,將類似的物品推薦給用戶。

    Item-CF和基於內容(CB)的推薦

       - 其實都是基於物品相似度預測推薦,只是相似度計算的方法不一樣,前者是從用戶歷史的偏好推斷,而後者是基於物品本身的屬性特徵信息。

   同樣是協同過濾,在基於用戶和基於項目兩個策略中應該如何選擇呢?

        - 電商、電影、音樂網站,用戶數量遠大於物品數量。

        - 新聞網站,物品(新聞文本)數量可能大於用戶數量。

3、 User-CF和Item-CF的比較

     同樣是協同過濾,在User-CF和ltem-CF兩個策略中應該如何選擇呢?

     Item-CF應用場景

       -  基於物品的協同過濾( Item-CF ) 推薦機制是 Amazon在基於用戶的機制上改良的一種策略因為在大部分的Web站點中,物品的個數是遠遠小於用戶的數量的,而且物品的個數和相似度相對比較穩定,同時基於物品的機制比基於用戶的實時性更好一些,所以 Item-CF 成為了目前推薦策略的主流。

     User-CF應用場景

        - 設想一下在一些新聞推薦系統中,也許物品一一也就是新聞的個數可能大於用戶的個數,而且新聞的更新程度也有很快,所以它的相似度依然不穩定,這時用 User-cf可能效果更好。

    所以,推薦策略的選擇其實和具體的應用場景有很大的關系。

4、 基於協同過濾的推薦優缺點

 (1)基於協同過濾的推薦機制的優點:

        它不需要對物品或者用戶進行嚴格的建模,而且不要求對物品特徵的描述是機器可理解的,所以這種方法也是領域無關的。

       這種方法計算出來的推薦是開放的,可以共用他人的經驗,很好的支持用戶發現潛在的興趣偏好。

(2)存在的問題

        方法的核心是基於歷史數據,所以對新物品和新用戶都有「冷啟動」的問題。

        推薦的效果依賴於用戶歷史好數據的多少和准確性。

        在大部分的實現中,用戶歷史偏好是用稀疏矩陣進行存儲的,而稀疏矩陣上的計算有些明顯的問題,包括可能少部分人的錯誤偏好會對推薦的准確度有很大的影響等等。

        對於一些特殊品味的用戶不能給予很好的推薦。

(三)基於模型的協同過濾

1、基本思想

(1)用戶具有一定的特徵,決定著他的偏好選擇

(2)物品具有一定的特徵,影響著用戶需是否選擇它。

(3)用戶之所以選擇某一個商品,是因為用戶特徵與物品特徵相互匹配。

    基於這種思想,模型的建立相當於從行為數據中提取特徵,給用戶和物品同時打上「標簽」;這和基於人口統計學的用戶標簽、基於內容方法的物品標簽本質是一樣的,都是特徵的提取和匹配。

    有顯性特徵時(比如用戶標簽、物品分類標簽)我們可以直接匹配做出推薦;沒有時,可以根據已有的偏好數據,去發據出隱藏的特徵,這需要用到隱語義模型(LFM)。

2、基於模型的協同過濾推薦,就是基於樣本的用戶偏好信息,訓練一個推薦模型,然後根據實時的用戶喜好的信息進行預測新物品的得分,計算推薦

    基於近鄰的推薦和基於模型的推薦

        - 基於近鄰的推薦是在預測時直接使用已有的用戶偏好數據,通過近鄰數據來預測對新物品的偏好(類似分類)

        - 而基於模型的方法,是要使用這些偏好數據來訓練模型,找到內在規律,再用模型來做預測(類似回歸)

    訓練模型時,可以基於標簽內容來提取物品特徵,也可以讓模型去發據物品的潛在特徵;這樣的模型被稱為 隱語義模型 ( Latent Factor Model,LFM)。

(1)隱語義模型(LFM):用隱語義模型來進行協同過濾的目標:

            - 揭示隱藏的特徵,這些特徵能夠解釋為什麼給出對應的預測評分

            - 這類特徵可能是無法直接用語言解釋描述的,事實上我們並不需要知道,類似「玄學」

        通過矩陣分解進行降維分析

            - 協同過濾演算法非常依賴歷史數據,而一般的推薦系統中,偏好數據又往往是稀疏的;這就需要對原始數據做降維處理。

            - 分解之後的矩陣,就代表了用戶和物品的隱藏特徵

        隱語義模型的實例:基於概率的隱語義分析(pLSA)、隱式迪利克雷分布模型(LDA)、矩陣因子分解模型(基於奇異值分解的模型,SVD)

(2)LFM降維方法——矩陣因子分解

(3)LFM的進一步理解

    我們可以認為,用戶之所以給電影打出這樣的分數,是有內在原因的,我們可以挖掘出影響用戶打分的隱藏因素,進而根據未評分電影與這些隱藏因素的關聯度,決定此未評分電影的預測評分。

    應該有一些隱藏的因素,影響用戶的打分,比如電影:演員、題材、年代…甚至不定是人直接可以理解的隱藏因子。

    找到隱藏因子,可以對user和Iiem進行關聯(找到是由於什麼使得user喜歡/不喜歡此Item,什麼會決定user喜歡/不喜歡此item),就可以推測用戶是否會喜歡某一部未看過的電影。

(4)矩陣因子分解

(5)模型的求解——損失函數

(6)模型的求解演算法——ALS

    現在,矩陣因子分解的問題已經轉化成了一個標準的優化問題,需要求解P、Q,使目標損失函數取最小值。

    最小化過程的求解,一般採用隨機梯度下降演算法或者交替最小二乘法來實現交替最小二乘法( Alternating Least Squares,ALS)

    ALS的思想是,由於兩個矩陣P和Q都未知,且通過矩陣乘法耦合在一起,為了使它們解耦,可以先固定Q,把P當作變數,通過損失函數最小化求出P,這就是一個經典的最小二乘問題;再反過來固定求得的P,把Q當作變數,求解出Q:如此交替執行,直到誤差滿足閱值條件,或者到達迭代上限。

(7)梯度下降演算法

D. 推薦演算法簡介

寫在最前面:本文內容主要來自於書籍《推薦系統實踐》和《推薦系統與深度學習》。

推薦系統是目前互聯網世界最常見的智能產品形式。從電子商務、音樂視頻網站,到作為互聯網經濟支柱的在線廣告和新穎的在線應用推薦,到處都有推薦系統的身影。推薦演算法是推薦系統的核心,其本質是通過一定的方式將用戶和物品聯系起來,而不同的推薦系統利用了不同的方式。

推薦系統的主要功能是以個性化的方式幫助用戶從極大的搜索空間中快速找到感興趣的對象。因此,目前所用的推薦系統多為個性化推薦系統。個性化推薦的成功應用需要兩個條件:

在推薦系統的眾多演算法中,基於協同的推薦和基於內容的推薦在實踐中得到了最廣泛的應用。本文也將從這兩種演算法開始,結合時間、地點上下文環境以及社交環境,對常見的推薦演算法做一個簡單的介紹。

基於內容的演算法的本質是對物品內容進行分析,從中提取特徵,然後基於用戶對何種特徵感興趣來推薦含有用戶感興趣特徵的物品。因此,基於內容的推薦演算法有兩個最基本的要求:

下面我們以一個簡單的電影推薦來介紹基於內容的推薦演算法。

現在有兩個用戶A、B和他們看過的電影以及打分情況如下:

其中問好(?)表示用戶未看過。用戶A對《銀河護衛隊 》《變形金剛》《星際迷航》三部科幻電影都有評分,平均分為 4 .7 分 ( (5+4+5 ) / 3=4.7 );對《三生三世》《美人魚》《北京遇上西雅圖》三部愛情電影評分平均分為 2.3 分 ( ( 3十2+2 ) /3=2.3 )。現在需要給A推薦電影,很明顯A更傾向於科幻電影,因此推薦系統會給A推薦獨立日。而對於用戶B,通過簡單的計算我們可以知道更喜歡愛情電影,因此給其推薦《三生三世》。當然,在實際推薦系統中,預測打分比這更加復雜些,但是其原理是一樣的。

現在,我們可以將基於內容的推薦歸納為以下四個步驟:

通過上面四步就能快速構建一個簡單的推薦系統。基於內容的推薦系統通常簡單有效,可解釋性好,沒有物品冷啟動問題。但他也有兩個明顯的缺點:

最後,順便提一下特徵提取方法:對於某些特徵較為明確的物品,一般可以直接對其打標簽,如電影類別。而對於文本類別的特徵,則主要是其主題情感等,則些可以通過tf-idf或LDA等方法得到。

基於協同的演算法在很多地方也叫基於鄰域的演算法,主要可分為兩種:基於用戶的協同演算法和基於物品的協同演算法。

啤酒和尿布的故事在數據挖掘領域十分有名,該故事講述了美國沃爾瑪超市統計發現啤酒和尿布一起被購買的次數非常多,因此將啤酒和尿布擺在了一起,最後啤酒和尿布的銷量雙雙增加了。這便是一個典型的物品協同過濾的例子。

基於物品的協同過濾指基於物品的行為相似度(如啤酒尿布被同時購買)來進行物品推薦。該演算法認為,物品A和物品B具有很大相似度是因為喜歡物品A的用戶大都也喜歡物品B。

基於物品的協同過濾演算法主要分為兩步:

基於物品的協同過濾演算法中計算物品相似度的方法有以下幾種:
(1)基於共同喜歡物品的用戶列表計算。

此外,John S. Breese再其論文中還提及了IUF(Inverse User Frequence,逆用戶活躍度)的參數,其認為活躍用戶對物品相似度的貢獻應該小於不活躍的用戶,應該增加IUF參數來修正物品相似度的公式:

上面的公式只是對活躍用戶做了一種軟性的懲罰, 但對於很多過於活躍的用戶, 比如某位買了當當網80%圖書的用戶, 為了避免相似度矩陣過於稠密, 我們在實際計算中一般直接忽略他的興趣列表, 而不將其納入到相似度計算的數據集中。

(2)基於餘弦相似度計算。

(3)熱門物品的懲罰。
從上面(1)的相似度計算公式中,我們可以發現當物品 i 被更多人購買時,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都會增長。對於熱門物品,分子 N(i) ∩ N(j) 的增長速度往往高於 N(i),這就會使得物品 i 和很多其他的物品相似度都偏高,這就是 ItemCF 中的物品熱門問題。推薦結果過於熱門,會使得個性化感知下降。以歌曲相似度為例,大部分用戶都會收藏《小蘋果》這些熱門歌曲,從而導致《小蘋果》出現在很多的相似歌曲中。為了解決這個問題,我們對於物品 i 進行懲罰,例如下式, 當α∈(0, 0.5) 時,N(i) 越小,懲罰得越厲害,從而使熱門物品相關性分數下降( 博主註:這部分未充分理解 ):

此外,Kary pis在研究中發現如果將ItemCF的相似度矩陣按最大值歸一化, 可以提高推薦的准確率。 其研究表明, 如果已經得到了物品相似度矩陣w, 那麼可以用如下公式得到歸一化之後的相似度矩陣w':

歸一化的好處不僅僅在於增加推薦的准確度,它還可以提高推薦的覆蓋率和多樣性。一般來說,物品總是屬於很多不同的類,每一類中的物品聯系比較緊密。假設物品分為兩類——A和B, A類物品之間的相似度為0.5, B類物品之間的相似度為0.6, 而A類物品和B類物品之間的相似度是0.2。 在這種情況下, 如果一個用戶喜歡了5個A類物品和5個B類物品, 用ItemCF給他進行推薦, 推薦的就都是B類物品, 因為B類物品之間的相似度大。 但如果歸一化之後, A類物品之間的相似度變成了1, B類物品之間的相似度也是1, 那麼這種情況下, 用戶如果喜歡5個A類物品和5個B類物品, 那麼他的推薦列表中A類物品和B類物品的數目也應該是大致相等的。 從這個例子可以看出, 相似度的歸一化可以提高推薦的多樣性。

那麼,對於兩個不同的類,什麼樣的類其類內物品之間的相似度高,什麼樣的類其類內物品相似度低呢?一般來說,熱門的類其類內物品相似度一般比較大。如果不進行歸一化,就會推薦比較熱門的類裡面的物品,而這些物品也是比較熱門的。因此,推薦的覆蓋率就比較低。相反,如果進行相似度的歸一化,則可以提高推薦系統的覆蓋率。

最後,利用物品相似度矩陣和用戶打過分的物品記錄就可以對一個用戶進行推薦評分:

基於用戶的協同演算法與基於物品的協同演算法原理類似,只不過基於物品的協同是用戶U購買了A物品,會計算經常有哪些物品與A一起購買(也即相似度),然後推薦給用戶U這些與A相似的物品。而基於用戶的協同則是先計算用戶的相似性(通過計算這些用戶購買過的相同的物品),然後將這些相似用戶購買過的物品推薦給用戶U。

基於用戶的協同過濾演算法主要包括兩個步驟:

步驟(1)的關鍵是計算用戶的興趣相似度,主要是利用用戶的行為相似度計算用戶相似度。給定用戶 u 和 v,N(u) 表示用戶u曾經有過正反饋(譬如購買)的物品集合,N(v) 表示用戶 v 曾經有過正反饋的物品集合。那麼我們可以通過如下的 Jaccard 公式簡單的計算 u 和 v 的相似度:

或通過餘弦相似度:

得到用戶之間的相似度之後,UserCF演算法會給用戶推薦和他興趣最相似的K個用戶喜歡的物品。如下的公式度量了UserCF演算法中用戶 u 對物品 i 的感興趣程度:

首先回顧一下UserCF演算法和ItemCF演算法的推薦原理:UserCF給用戶推薦那些和他有共同興趣愛好的用戶喜歡的物品, 而ItemCF給用戶推薦那些和他之前喜歡的物品具有類似行為的物品。

(1)從推薦場景考慮
首先從場景來看,如果用戶數量遠遠超過物品數量,如購物網站淘寶,那麼可以考慮ItemCF,因為維護一個非常大的用戶關系網是不容易的。其次,物品數據一般較為穩定,因此物品相似度矩陣不必頻繁更新,維護代價較小。

UserCF的推薦結果著重於反應和用戶興趣相似的小群體的熱點,而ItemCF的推薦結果著重於維系用戶的歷史興趣。換句話說,UserCF的推薦更社會化,反應了用戶所在小型興趣群體中物品的熱門程度,而ItemCF的推薦更加個性化,反應了用戶自己的個性傳承。因此UserCF更適合新聞、微博或微內容的推薦,而且新聞內容更新頻率非常高,想要維護這樣一個非常大而且更新頻繁的表無疑是非常難的。

在新聞類網站中,用戶的興趣愛好往往比較粗粒度,很少會有用戶說只看某個話題的新聞,而且往往某個話題也不是每天都會有新聞。 個性化新聞推薦更強調新聞熱點,熱門程度和時效性是個性化新聞推薦的重點,個性化是補充,所以 UserCF 給用戶推薦和他有相同興趣愛好的人關注的新聞,這樣在保證了熱點和時效性的同時,兼顧了個性化。

(2)從系統多樣性(也稱覆蓋率,指一個推薦系統能否給用戶提供多種選擇)方面來看,ItemCF的多樣性要遠遠好於UserCF,因為UserCF更傾向於推薦熱門物品。而ItemCF具有較好的新穎性,能夠發現長尾物品。所以大多數情況下,ItemCF在精度上較小於UserCF,但其在覆蓋率和新穎性上面卻比UserCF要好很多。

在介紹本節基於矩陣分解的隱語義模型之前,讓我們先來回顧一下傳統的矩陣分解方法SVD在推薦系統的應用吧。

基於SVD矩陣分解在推薦中的應用可分為如下幾步:

SVD在計算前會先把評分矩陣 A 缺失值補全,補全之後稀疏矩陣 A 表示成稠密矩陣,然後將分解成 A' = U∑V T 。但是這種方法有兩個缺點:(1)補成稠密矩陣後需要耗費巨大的儲存空間,對這樣巨大的稠密矩陣進行儲存是不現實的;(2)SVD的計算復雜度很高,對這樣大的稠密矩陣中進行計算式不現實的。因此,隱語義模型就被發明了出來。

更詳細的SVD在推薦系統的應用可參考 奇異值分解SVD簡介及其在推薦系統中的簡單應用 。

隱語義模型(Latent Factor Model)最早在文本挖掘領域被提出,用於找到文本的隱含語義。相關的演算法有LSI,pLSA,LDA和Topic Model。本節將對隱語義模型在Top-N推薦中的應用進行詳細介紹,並通過實際的數據評測該模型。

隱語義模型的核心思想是通過隱含特徵聯系用戶興趣和物品。讓我們通過一個例子來理解一下這個模型。

現有兩個用戶,用戶A的興趣涉及偵探小說、科普圖書以及一些計算機技術書,而用戶B的興趣比較集中在數學和機器學習方面。那麼如何給A和B推薦圖書呢?

我們可以對書和物品的興趣進行分類。對於某個用戶,首先得到他的興趣分類,然後從分類中挑選他可能喜歡的物品。簡言之,這個基於興趣分類的方法大概需要解決3個問題:

對於第一個問題的簡單解決方案是找相關專業人員給物品分類。以圖書為例,每本書出版時,編輯都會給出一個分類。但是,即使有很系統的分類體系,編輯給出的分類仍然具有以下缺點:(1)編輯的意見不能代表各種用戶的意見;(2)編輯很難控制分類的細粒度;(3)編輯很難給一個物品多個分類;(4)編輯很難給一個物品多個分類;(5)編輯很難給出多個維度的分類;(6)編輯很難決定一個物品在某一個類別中的權重。

為了解決上述問題,研究員提出可以從數據出發,自動找到那些分類,然後進行個性化推薦。隱語義模型由於採用基於用戶行為統計的自動聚類,較好地解決了上面提出的5個問題。

LFM將矩陣分解成2個而不是3個:

推薦系統中用戶和物品的交互數據分為顯性反饋和隱性反饋數據。隱式模型中多了一個置信參數,具體涉及到ALS(交替最小二乘法,Alternating Least Squares)中對於隱式反饋模型的處理方式——有的文章稱為「加權的正則化矩陣分解」:

一個小細節:在隱性反饋數據集中,只有正樣本(正反饋)沒有負反饋(負樣本),因此如何給用戶生成負樣本來進行訓練是一個重要的問題。Rong Pan在其文章中對此進行了探討,對比了如下幾種方法:

用戶行為很容易用二分圖表示,因此很多圖演算法都可以應用到推薦系統中。基於圖的模型(graph-based model)是推薦系統中的重要內容。很多研究人員把基於領域的模型也稱為基於圖的模型,因為可以把基於領域的模型看作基於圖的模型的簡單形式。

在研究基於圖的模型之前,需要將用戶行為數據表示成圖的形式。本節的數據是由一系列用戶物品二元組 (u, i) 組成的,其中 u 表示用戶對物品 i 產生過行為。

令 G(V, E) 表示用戶物品二分圖,其中 V=V U UV I 由用戶頂點 V U 和物品節點 V I 組成。對於數據集中每一個二元組 (u, i) ,圖中都有一套對應的邊 e(v u , v i ),其中 v u ∈V U 是用戶對應的頂點,v i ∈V I 是物品i對應的頂點。如下圖是一個簡單的物品二分圖,其中圓形節點代表用戶,方形節點代表物品,用戶物品的直接連線代表用戶對物品產生過行為。比如下圖中的用戶A對物品a、b、d產生過行為。

度量圖中兩個頂點之間相關性的方法很多,但一般來說圖中頂點的相關性主要取決於下面3個因素:

而相關性高的一對頂點一般具有如下特徵:

舉個例子,如下圖,用戶A和物品c、e沒有邊直連,但A可通過一條長度為3的路徑到達c,而Ae之間有兩條長度為3的路徑。那麼A和e的相關性要高於頂點A和c,因而物品e在用戶A的推薦列表中應該排在物品c之前,因為Ae之間有兩條路徑。其中,(A,b,C,e)路徑經過的頂點的出度為(3,2,2,2),而 (A,d,D,e) 路徑經過了一個出度比較大的頂點D,所以 (A,d,D,e) 對頂點A與e之間相關性的貢獻要小於(A,b,C,e)。

基於上面3個主要因素,研究人員設計了很多計算圖中頂點相關性的方法,本節將介紹一種基於隨機遊走的PersonalRank演算法。

假設要給用戶u進行個性化推薦,可以從用戶u對應的節點 v u 開始在用戶物品二分圖上進行隨機遊走。遊走到任一節點時,首先按照概率α決定是繼續遊走還是停止這次遊走並從 v u 節點重新開始遊走。若決定繼續遊走,則從當前節點指向的節點中按照均勻分布隨機選擇一個節點作為遊走下次經過的節點。這樣,經過很多次隨機遊走後,每個物品被訪問到的概率會收斂到一個數。最終的推薦列表中物品的權重就是物品節點的訪問概率。

上述演算法可以表示成下面的公式:

雖然通過隨機遊走可以很好地在理論上解釋PersonalRank演算法,但是該演算法在時間復雜度上有明顯的缺點。因為在為每個用戶進行推薦時,都需要在整個用戶物品二分圖上進行迭代,知道所有頂點的PR值都收斂。這一過程的時間復雜度非常高,不僅無法在線進行實時推薦,離線計算也是非常耗時的。

有兩種方法可以解決上面PersonalRank時間復雜度高的問題:
(1)減少迭代次數,在收斂之前停止迭代。但是這樣會影響最終的精度。

(2)從矩陣論出發,重新涉及演算法。另M為用戶物品二分圖的轉移概率矩陣,即:

網路社交是當今社會非常重要甚至可以說是必不可少的社交方式,用戶在互聯網上的時間有相當大的一部分都用在了社交網路上。

當前國外最著名的社交網站是Facebook和Twitter,國內的代表則是微信/QQ和微博。這些社交網站可以分為兩類:

需要指出的是,任何一個社交網站都不是單純的社交圖譜或興趣圖譜。如QQ上有些興趣愛好群可以認識不同的陌生人,而微博中的好友也可以是現實中認識的。

社交網路定義了用戶之間的聯系,因此可以用圖定義社交網路。我們用圖 G(V,E,w) 定義一個社交網路,其中V是頂點集合,每個頂點代表一個用戶,E是邊集合,如果用戶va和vb有社交網路關系,那麼就有一條邊 e(v a , v b ) 連接這兩個用戶,而 w(v a , v b )定義了邊的權重。一般來說,有三種不同的社交網路數據:

和一般購物網站中的用戶活躍度分布和物品流行度分布類似,社交網路中用戶的入度(in degree,表示有多少人關注)和出度(out degree,表示關注多少人)的分布也是滿足長尾分布的。即大部分人關注的人都很少,被關注很多的人也很少。

給定一個社交網路和一份用戶行為數據集。其中社交網路定義了用戶之間的好友關系,而用戶行為數據集定義了不同用戶的歷史行為和興趣數據。那麼最簡單的演算法就是給用戶推薦好友喜歡的物品集合。即用戶u對物品i的興趣 p ui 可以通過如下公式計算。

用戶u和用戶v的熟悉程度描述了用戶u和用戶在現實社會中的熟悉程度。一般來說,用戶更加相信自己熟悉的好友的推薦,因此我們需要考慮用戶之間的熟悉度。下面介紹3中衡量用戶熟悉程度的方法。

(1)對於用戶u和用戶v,可以使用共同好友比例來計算他們的相似度:

上式中 out(u) 可以理解為用戶u關注的用戶合集,因此 out(u) ∩ out(v) 定義了用戶u、v共同關注的用戶集合。

(2)使用被關注的用戶數量來計算用戶之間的相似度,只要將公式中的 out(u) 修改為 in(u):

in(u) 是指關注用戶u的集合。在無向社交網路中,in(u)和out(u)是相同的,而在微博這種有向社交網路中,這兩個集合的含義就不痛了。一般來說,本方法適合用來計算微博大V之間的相似度,因為大v往往被關注的人數比較多;而方法(1)適用於計算普通用戶之間的相似度,因為普通用戶往往關注行為比較豐富。

(3)除此之外,還可以定義第三種有向的相似度:這個相似度的含義是用戶u關注的用戶中,有多大比例也關注了用戶v:

這個相似度有一個缺點,就是在該相似度下所有人都和大v有很大的相似度,這是因為公式中的分母並沒有考慮 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,來降低大v與其他用戶的相似度:

上面介紹了3種計算用戶之間相似度(或稱熟悉度)的計算方法。除了熟悉程度,還需要考慮用戶之間的興趣相似度。我們和父母很熟悉,但很多時候我們和父母的興趣確不相似,因此也不會喜歡他們喜歡的物品。因此,在度量用戶相似度時,還需要考慮興趣相似度,而興趣相似度可以通過和UserCF類似的方法度量,即如果兩個用戶喜歡的物品集合重合度很高,兩個用戶的興趣相似度很高。

最後,我們可以通過加權的形式將兩種權重合並起來,便得到了各個好有用戶的權重了。

有了權重,我們便可以針對用戶u挑選k個最相似的用戶,把他們購買過的物品中,u未購買過的物品推薦給用戶u即可。打分公式如下:

其中 w' 是合並後的權重,score是用戶v對物品的打分。

node2vec的整體思路分為兩個步驟:第一個步驟是隨機遊走(random walk),即通過一定規則隨機抽取一些點的序列;第二個步驟是將點的序列輸入至word2vec模型從而得到每個點的embedding向量。

隨機遊走在前面基於圖的模型中已經介紹過,其主要分為兩步:(1)選擇起始節點;(2)選擇下一節點。起始節點選擇有兩種方法:按一定規則抽取一定量的節點或者以圖中所有節點作為起始節點。一般來說會選擇後一種方法以保證所有節點都會被選取到。

在選擇下一節點方法上,最簡單的是按邊的權重來選擇,但在實際應用中需要通過廣度優先還是深度優先的方法來控制遊走范圍。一般來說,深度優先發現能力更強,廣度優先更能使社區內(較相似)的節點出現在一個路徑里。

斯坦福大學Jure Leskovec教授給出了一種可以控制廣度優先或者深度優先的方法。

以上圖為例,假設第一步是從t隨機遊走到v,這時候我們要確定下一步的鄰接節點。本例中,作者定義了p和q兩個參數變數來調節遊走,首先計算其鄰居節點與上一節點t的距離d,根據下面的公式得到α:

一般從每個節點開始遊走5~10次,步長則根據點的數量N遊走根號N步。如此便可通過random walk生成點的序列樣本。

得到序列之後,便可以通過word2vec的方式訓練得到各個用戶的特徵向量,通過餘弦相似度便可以計算各個用戶的相似度了。有了相似度,便可以使用基於用戶的推薦演算法了。

推薦系統需要根據用戶的歷史行為和興趣預測用戶未來的行為和興趣,因此大量的用戶行為數據就成為推薦系統的重要組成部分和先決條件。如何在沒有大量用戶數據的情況下設計個性化推薦系統並且讓用戶對推薦結果滿意從而願意使用推薦系統,就是冷啟動問題。

冷啟動問題主要分為三類:

針對用戶冷啟動,下面給出一些簡要的方案:
(1)有效利用賬戶信息。利用用戶注冊時提供的年齡、性別等數據做粗粒度的個性化;
(2)利用用戶的社交網路賬號登錄(需要用戶授權),導入用戶在社交網站上的好友信息,然後給用戶推薦其好友喜歡的物品;
(3)要求用戶在登錄時對一些物品進行反饋,手機用戶對這些物品的興趣信息,然後給用推薦那些和這些物品相似的物品;
(4)提供非個性化推薦。非個性化推薦的最簡單例子就是熱門排行榜,我們可以給用戶推薦熱門排行榜,然後等到用戶數據收集到一定的時候,在切換為個性化推薦。

對於物品冷啟動,可以利用新加入物品的內容信息,將它們推薦給喜歡過和他們相似的物品的用戶。

對於系統冷啟動,可以引入專家知識,通過一定高效的方式快速建立起物品的相關度表。

在上面介紹了一些推薦系統的基礎演算法知識,這些演算法大都是比較經典且現在還在使用的。但是需要注意的是,在實踐中,任何一種推薦演算法都不是單獨使用的,而是將多種推薦演算法結合起來,也就是混合推薦系統,但是在這里並不準備介紹,感興趣的可以查閱《推薦系統》或《推薦系統與深度學習》等書籍。此外,在推薦中非常重要的點擊率模型以及基於矩陣的一些排序演算法在這里並沒有提及,感興趣的也可自行學習。

雖然現在用的很多演算法都是基於深度學習的,但是這些經典演算法能夠讓我們對推薦系統的發展有一個比較好的理解,同時,更重要的一點——「推陳出新」,只有掌握了這些經典的演算法,才能提出或理解現在的一些更好地演算法。

閱讀全文

與推薦演算法中的實時推薦相關的資料

熱點內容
建興app怎麼變成黑色了 瀏覽:47
文件壓縮包如何加密文件 瀏覽:183
2010提出的演算法 瀏覽:672
冰櫃壓縮機的壽命 瀏覽:105
辦公室采訪程序員 瀏覽:569
美橙雲伺服器購買 瀏覽:754
漢語詞典pdf下載 瀏覽:353
android公網ip 瀏覽:613
要塞1地圖放哪個文件夾 瀏覽:850
凡科建站怎麼弄伺服器 瀏覽:939
蘋果手機怎麼設置app播放 瀏覽:202
下載網站源碼用什麼瀏覽器 瀏覽:241
六線譜pdf 瀏覽:156
linuxmysqlsock 瀏覽:239
人教版數學pdf下載 瀏覽:460
文檔安全加密系統 瀏覽:492
數控銑床編程簡單數字 瀏覽:788
編程電纜如何重啟 瀏覽:121
myqq命令行發消息 瀏覽:365
日產逍客怎麼使用app升窗 瀏覽:503