導航:首頁 > 源碼編譯 > 圖上兩點之間最短距離演算法

圖上兩點之間最短距離演算法

發布時間:2024-01-19 04:05:33

A. 弗洛伊德演算法求出最短距離

(1)利用二維數組dist[i][j]記錄當前vi到vj的最短路徑長度,數組dist的初值等於圖的帶權鄰接矩陣;


(3)依次向S中加入v0,v1…vn-1,每加入一個頂點,對dist[i][j]進行一次修正:設S={v0,v1…vk-1},加入vk,則dist(k)[i][j]=min{dist(k-1)[i][j],dist(k-1)[i][k]+dist(k-1)[k][j]}。

dist(k)[i][j]的含義:允許中間頂點的序號最大為k時從vi到vj的最短路徑長度。
dist(n-1)[i][j]就是vi到vj的最短路徑長度。

弗洛伊德最短距離演算法(FloydShortestPathAlgorithm)又稱為插點法,是一種利用動態規劃的思想尋找給定的加權圖中多源點之間最短路徑的演算法。該演算法名稱以創始人之一、1978年圖靈獎獲得者、斯坦福大學計算機科學系教授羅伯特·弗洛伊德命名。
中文名弗洛伊德最短距離演算法
外文名FloydShortestPathAlgorithm
所屬學科IT
所屬領域程序設計
簡介
最短路問題是網路最優化中一個基本而又非常重要的問題,這一問題相對比較簡單,在實際生產和生活中經常遇到,許多的網路最優化問題可以化為最短路問題,或者用最短路演算法作為其子程序.因此,最短路的用途已遠遠超出其表面意義迄今為止,所有最短路演算法都只對不含負迴路的網路有效,實際上對含有負迴路的網路,其最短路問題是NP困難的,因此本研究所討論的網路也不含負迴路.此外,如果將無向圖每條邊用兩條端點相同、方向相反的弧來代替,可以將其化為有向圖,因而不討論無向圖.本研究中未述及的術語、記號。
Floyd演算法是一種用於尋找給定加權圖中頂點間最短路徑的演算法,以1978年圖靈獎獲得者斯坦福大學計算機科學系教授RobertW.Floyd命名。Floyd演算法採用動態規劃的原理計算兩兩頂點間最短路徑,主要解決網路路由尋找最優路徑的問題。

閱讀全文

與圖上兩點之間最短距離演算法相關的資料

熱點內容
插入單片機檢測不到埠 瀏覽:467
svn文件夾如何刪除 瀏覽:621
編譯過程和解析過程 瀏覽:819
德雲天團app如何參與活動 瀏覽:740
編譯系統的硬體原理 瀏覽:330
黑色玫瑰什麼時候出的伺服器 瀏覽:636
如何打開列印共享伺服器 瀏覽:866
手機熱點密碼的加密方式 瀏覽:328
貴州大數據伺服器閑置雲伺服器 瀏覽:527
文件夾加密微軟 瀏覽:383
蘋果突然提示無法驗證伺服器身份怎麼解決 瀏覽:988
調度命令發布的原則 瀏覽:679
dos提示不是內部或外部命令 瀏覽:683
騰訊100g編程源碼 瀏覽:209
機械設計和編程 瀏覽:830
八角單片機紅外遙控led 瀏覽:94
血液凈化pdf 瀏覽:383
烏市停車APP哪裡下載 瀏覽:904
單片機中fg是什麼意思 瀏覽:883
程序員網線 瀏覽:279