導航:首頁 > 源碼編譯 > 演算法工程師基本知識點

演算法工程師基本知識點

發布時間:2024-01-19 14:18:06

❶ 想要從事演算法工程師,要掌握什麼

數據挖掘&分析:深度學習的應用能夠突飛猛進的一個重要原因就是大數據的支撐。當前獲取數據的成本很低,而數據清理和挖掘的成本很高,但非常重要。數據是模型的輸入,是模型能夠擬合的上限。

演算法策略:這是每位演算法工程師的硬實力,有了清晰的問題和可用的數據後,我們需要選擇合適的演算法策略求解問題。就銷量預估而言,由於特徵大部分都是表格型,樹模型及其變體成為首選的方案。通過樹模型,你能夠快速拿到一個不錯的baseline。

相關術語:

OCR:OCR(Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程。

Matlab:商業數學軟體。

CUDA:(Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。CUDA是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題。

OpenCL:OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。

❷ 演算法工程師應該學哪些

一、演算法工程師簡介
(通常是月薪15k以上,年薪18萬以上,只是一個概數,具體薪資可以到招聘網站如拉鉤,獵聘網上看看)
演算法工程師目前是一個高端也是相對緊缺的職位;
演算法工程師包括
音/視頻演算法工程師(通常統稱為語音/視頻/圖形開發工程師)、圖像處理演算法工程師、計算機視覺演算法工程師、通信基帶演算法工程師、信號演算法工程師、射頻/通信演算法工程師、自然語言演算法工程師、數據挖掘演算法工程師、搜索演算法工程師、控制演算法工程師(雲台演算法工程師,飛控演算法工程師,機器人控制演算法)、導航演算法工程師(
@之介
感謝補充)、其他【其他一切需要復雜演算法的行業】
專業要求:計算機、電子、通信、數學等相關專業;
學歷要求:本科及其以上的學歷,大多數是碩士學歷及其以上;
語言要求:英語要求是熟練,基本上能閱讀國外專業書刊,做這一行經常要讀論文;
必須掌握計算機相關知識,熟練使用模擬工具MATLAB等,必須會一門編程語言。
演算法工程師的技能樹(不同方向差異較大,此處僅供參考)
1 機器學習
2 大數據處理:熟悉至少一個分布式計算框架Hadoop/Spark/Storm/ map-rece/MPI
3 數據挖掘
4 扎實的數學功底
5 至少熟悉C/C++或者java,熟悉至少一門編程語言例如java/python/R
加分項:具有較為豐富的項目實踐經驗(不是水論文的哪種)
二、演算法工程師大致分類與技術要求
(一)圖像演算法/計算機視覺工程師類
包括
圖像演算法工程師,圖像處理工程師,音/視頻處理演算法工程師,計算機視覺工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:機器學習,模式識別
l
技術要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader語言,熟悉常見圖像處理演算法GPU實現及優化;
(2) 語言:精通C/C++;
(3) 工具:Matlab數學軟體,CUDA運算平台,VTK圖像圖形開源軟體【醫學領域:ITK,醫學圖像處理軟體包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用開源庫;
(5) 有人臉識別,行人檢測,視頻分析,三維建模,動態跟蹤,車識別,目標檢測跟蹤識別經歷的人優先考慮;
(6) 熟悉基於GPU的演算法設計與優化和並行優化經驗者優先;
(7) 【音/視頻領域】熟悉H.264等視頻編解碼標准和FFMPEG,熟悉rtmp等流媒體傳輸協議,熟悉視頻和音頻解碼演算法,研究各種多媒體文件格式,GPU加速;
應用領域:
(1) 互聯網:如美顏app
(2) 醫學領域:如臨床醫學圖像
(3) 汽車領域
(4) 人工智慧
相關術語:
(1) OCR:OCR (Optical Character Recognition,光學字元識別)是指電子設備(例如掃描儀或數碼相機)檢查紙上列印的字元,通過檢測暗、亮的模式確定其形狀,然後用字元識別方法將形狀翻譯成計算機文字的過程
(2) Matlab:商業數學軟體;
(3) CUDA: (Compute Unified Device Architecture),是顯卡廠商NVIDIA推出的運算平台(由ISA和GPU構成)。 CUDA™是一種由NVIDIA推出的通用並行計算架構,該架構使GPU能夠解決復雜的計算問題
(4) OpenCL: OpenCL是一個為異構平台編寫程序的框架,此異構平台可由CPU,GPU或其他類型的處理器組成。
(5) OpenCV:開源計算機視覺庫;OpenGL:開源圖形庫;Caffe:是一個清晰,可讀性高,快速的深度學習框架。
(6) CNN:(深度學習)卷積神經網路(Convolutional Neural Network)CNN主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形。
(7) 開源庫:指的是計算機行業中對所有人開發的代碼庫,所有人均可以使用並改進代碼演算法。
(二)機器學習工程師
包括
機器學習工程師
要求
l
專業:計算機、數學、統計學相關專業;
l
技術領域:人工智慧,機器學習
l
技術要求:
(1) 熟悉Hadoop/Hive以及Map-Rece計算模式,熟悉Spark、Shark等尤佳;
(2) 大數據挖掘;
(3) 高性能、高並發的機器學習、數據挖掘方法及架構的研發;
應用領域:
(1)人工智慧,比如各類模擬、擬人應用,如機器人
(2)醫療用於各類擬合預測
(3)金融高頻交易
(4)互聯網數據挖掘、關聯推薦
(5)無人汽車,無人機

相關術語:
(1) Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(三)自然語言處理工程師
包括
自然語言處理工程師
要求
l
專業:計算機相關專業;
l
技術領域:文本資料庫
l
技術要求:
(1) 熟悉中文分詞標注、文本分類、語言模型、實體識別、知識圖譜抽取和推理、問答系統設計、深度問答等NLP 相關演算法;
(2) 應用NLP、機器學習等技術解決海量UGC的文本相關性;
(3) 分詞、詞性分析、實體識別、新詞發現、語義關聯等NLP基礎性研究與開發;
(4) 人工智慧,分布式處理Hadoop;
(5) 數據結構和演算法;
應用領域:
口語輸入、書面語輸入
、語言分析和理解、語言生成、口語輸出技術、話語分析與對話、文獻自動處理、多語問題的計算機處理、多模態的計算機處理、信息傳輸與信息存儲 、自然語言處理中的數學方法、語言資源、自然語言處理系統的評測。

相關術語:
(2) NLP:人工智慧的自然語言處理,NLP (Natural Language Processing) 是人工智慧(AI)的一個子領域。NLP涉及領域很多,最令我感興趣的是「中文自動分詞」(Chinese word segmentation):結婚的和尚未結婚的【計算機中卻有可能理解為結婚的「和尚「】

(四)射頻/通信/信號演算法工程師類
包括
3G/4G無線通信演算法工程師, 通信基帶演算法工程師,DSP開發工程師(數字信號處理),射頻通信工程師,信號演算法工程師
要求
l
專業:計算機、通信相關專業;
l
技術領域:2G、3G、4G,BlueTooth(藍牙),WLAN,無線移動通信, 網路通信基帶信號處理
l
技術要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等無線通信相關知識,熟悉現有的通信系統和標准協議,熟悉常用的無線測試設備;
(2) 信號處理技術,通信演算法;
(3) 熟悉同步、均衡、信道解碼等演算法的基本原理;
(4) 【射頻部分】熟悉射頻前端晶元,扎實的射頻微波理論和測試經驗,熟練使用射頻電路模擬工具(如ADS或MW或Ansoft);熟練使用cadence、altium designer PCB電路設計軟體;
(5) 有扎實的數學基礎,如復變函數、隨機過程、數值計算、矩陣論、離散數學
應用領域:
通信
VR【用於快速傳輸視頻圖像,例如樂客靈境VR公司招募的通信工程師(數據編碼、流數據)】
物聯網,車聯網
導航,軍事,衛星,雷達
相關術語:
(1) 基帶信號:指的是沒有經過調制(進行頻譜搬移和變換)的原始電信號。
(2) 基帶通信(又稱基帶傳輸):指傳輸基帶信號。進行基帶傳輸的系統稱為基帶傳輸系統。傳輸介質的整個信道被一個基帶信號佔用.基帶傳輸不需要數據機,設備化費小,具有速率高和誤碼率低等優點,.適合短距離的數據傳輸,傳輸距離在100米內,在音頻市話、計算機網路通信中被廣泛採用。如從計算機到監視器、列印機等外設的信號就是基帶傳輸的。大多數的區域網使用基帶傳輸,如乙太網、令牌環網。
(3) 射頻:射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率(電磁波),頻率范圍從300KHz~300GHz之間(因為其較高的頻率使其具有遠距離傳輸能力)。射頻簡稱RF射頻就是射頻電流,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。高頻(大於10K);射頻(300K-300G)是高頻的較高頻段;微波頻段(300M-300G)又是射頻的較高頻段。【有線電視就是用射頻傳輸方式】
(4) DSP:數字信號處理,也指數字信號處理晶元
(五)數據挖掘演算法工程師類
包括
推薦演算法工程師,數據挖掘演算法工程師
要求
l
專業:計算機、通信、應用數學、金融數學、模式識別、人工智慧;
l
技術領域:機器學習,數據挖掘
l
技術要求:
(1) 熟悉常用機器學習和數據挖掘演算法,包括但不限於決策樹、Kmeans、SVM、線性回歸、邏輯回歸以及神經網路等演算法;
(2) 熟練使用SQL、Matlab、Python等工具優先;
(3) 對Hadoop、Spark、Storm等大規模數據存儲與運算平台有實踐經驗【均為分布式計算框架】
(4) 數學基礎要好,如高數,統計學,數據結構
l
加分項:數據挖掘建模大賽;
應用領域
(1) 個性化推薦
(2) 廣告投放
(3) 大數據分析
相關術語
Map-Rece:MapRece是一種編程模型,用於大規模數據集(大於1TB)的並行運算。概念"Map(映射)"和"Rece(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。
(六)搜索演算法工程師
要求
l
技術領域:自然語言
l
技術要求:
(1) 數據結構,海量數據處理、高性能計算、大規模分布式系統開發
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗
(4) 精通Lucene/Solr/Elastic Search等技術,並有二次開發經驗;
(5) 精通倒排索引、全文檢索、分詞、排序等相關技術;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 優秀的資料庫設計和優化能力,精通MySQL資料庫應用 ;
(8) 了解推薦引擎和數據挖掘和機器學習的理論知識,有大型搜索應用的開發經驗者優先。
(七)控制演算法工程師類
包括了雲台控制演算法,飛控控制演算法,機器人控制演算法
要求
l
專業:計算機,電子信息工程,航天航空,自動化
l
技術要求:
(1) 精通自動控制原理(如PID)、現代控制理論,精通組合導航原理,姿態融合演算法,電機驅動,電機驅動
(2) 卡爾曼濾波,熟悉狀態空間分析法對控制系統進行數學模型建模、分析調試;
l
加分項:有電子設計大賽,機器人比賽,robocon等比賽經驗,有硬體設計的基礎;
應用領域
(1)醫療/工業機械設備
(2)工業機器人
(3)機器人
(4)無人機飛控、雲台控制等

(八)導航演算法工程師
要求
l 專業:計算機,電子信息工程,航天航空,自動化
l 技術要求(以公司職位JD為例)
公司一(1)精通慣性導航、激光導航、雷達導航等工作原理;
(2)精通組合導航演算法設計、精通卡爾曼濾波演算法、精通路徑規劃演算法;
(3)具備導航方案設計和實現的工程經驗;
(4)熟悉C/C++語言、熟悉至少一種嵌入式系統開發、熟悉Matlab工具;
公司二(1)熟悉基於視覺信息的SLAM、定位、導航演算法,有1年以上相關的科研或項目經歷;
(2)熟悉慣性導航演算法,熟悉IMU與視覺信息的融合;
應用領域
無人機、機器人等。

❸ 演算法工程師工作期間需要掌握什麼知識學到哪些核心技術

演算法工程師的主要核心技術基於數學,並輔以語言。要全面掌握的知識包括高級數學,復變函數,線性代數的離散數學,數據結構以及數據挖掘所需的概率論和數學統計知識。不要太受約束去平時閱讀教科書並多練習,並培養良好的思維能力。只有那些有想法的人才能擁有技術的未來。嘗試實現您遇到的任何演算法,無論演算法的優劣總是有其自身的特徵。此外,您必須具有一定的英語水平(至少6級),因為該領域的大多數官方材料都是外語。

計算機及相關專業本科以上學歷,在互聯網搜索,推薦,流量或相關領域有2年以上工作經驗。熟悉機器學習/自然語言處理/數據挖掘/深度學習中至少一項的原理和演算法,並且能夠熟練地建模和解決業務問題。精通Linux平台下的C / C ++ / Java語言開發,精通使用gcc / gdb等開發工具,並精通Python / Linux Shell / SQL等腳本開發。熟悉hadoop / hbase / storm等分布式計算技術,並熟悉其運行機制和體系結構。具有出色的分析和解決問題的能力,思路清晰,並對工作挑戰充滿熱情。具有強烈的工作責任感和團隊合作精神,並能夠交流和更好地學習。

❹ 想做一名演算法工程師需要學什麼

1、業務認知&問題定位
首先要清楚你所要解決的問題是什麼,是否需要復雜的演算法求解。問題的定義來源於你對業務的認知和理解。我們經常陷入一種誤區,覺得自己是一名演算法工程師,遇到任務問題都想要用復雜的演算法去求解。正所謂一頓操作猛如虎,得來的效果卻很一般。因此,做事之前一定要在理解業務的基礎上,把問題定位清楚,用合適的方法求解。
2、數據挖掘&分析
深度學習的應用能夠突飛猛進的一個重要原因就是大數據的支撐。當前獲取數據的成本很低,而數據清理和挖掘的成本很高,但非常重要。數據是模型的輸入,是模型能夠擬合的上限。在入模之前,你需要花一定的精力用於數據工作,這是必要也是值得的。因此,掌握數據能力也是一名演算法工程師的必經之路。
3、演算法策略
這是每位演算法工程師的硬實力,有了清晰的問題和可用的數據後,我們需要選擇合適的演算法策略求解問題。就銷量預估而言,由於特徵大部分都是表格型,樹模型及其變體成為首選的方案。通過樹模型,你能夠快速拿到一個不錯的baseline。但千萬不要停滯不前,你需要調研更多的先進的方案進行優化,即使此時能夠拿到的受益不多,但請堅持專研的精神(近期時序模型中,熱度很高的informer值得嘗試)。此外,「人工智慧,有多少人工就有多少智能」這句話在實際應用領域體現得淋漓盡致。策略也屬於演算法的一部分,人工策略有時候能夠帶來很大的受益,也能夠找到更適合的演算法優化方向。例如,我們在優化首猜的貨品池時,考慮到首猜目前的推薦演算法已經非常優秀了,但消費者的成交來源主要是搜索,我們通過人工分析選擇了做增量貨品供給的方式,拿到了不錯的業務效果。基於此,我們也找到了更合適的選品演算法優化方向。
4、離線實驗和線上AB實驗
實驗是驗證理論的最佳手段,也是最具有說服力的。我們需要找到幾個合適的指標進行優化,並且要保證離線效。

閱讀全文

與演算法工程師基本知識點相關的資料

熱點內容
單片機狀態周期 瀏覽:620
lua中的android 瀏覽:441
加密貴還是植發貴 瀏覽:662
陽光壓縮機繼電器 瀏覽:969
修改阿里雲伺服器密碼 瀏覽:815
lk4102加密晶元 瀏覽:588
怎麼更改app店面 瀏覽:489
設備部門如何做好伺服器 瀏覽:849
androido下載 瀏覽:478
神奇高量戰法副圖源碼 瀏覽:830
匯編語言設計凱撒密碼加密器 瀏覽:392
主次梁加密是加在哪裡 瀏覽:664
模板匹配演算法matlab 瀏覽:825
外地程序員去北京 瀏覽:24
安卓機換蘋果12如何轉移數據 瀏覽:420
互聯網ntp伺服器地址及埠 瀏覽:613
pdf到word轉換器 瀏覽:269
飛行解壓素材 瀏覽:498
51單片機指令用背嗎 瀏覽:936
unityai演算法 瀏覽:834