① 做動態規劃用lingo和matlab哪個更好點
matlab構造矩陣要下點功夫 但是lingo編程就簡單多了,但是就是沒有程序調用介面! 學有餘力,建議使用matlab
② 初學者,數學建模需要准備些什麼東西
數學建模應當掌握的十類演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算 法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法) 2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要 處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具) 3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題 屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現) 4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉 及到圖論的問題可以用這些方法解決,需要認真准備) 5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計 中比較常用的方法,很多場合可以用到競賽中) 6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是 用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實 現比較困難,需慎重使用) 7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽 題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好 使用一些高級語言作為編程工具) 8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只 認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非 常重要的) 9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常 用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調 用) 10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該 要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)
數學建模資料
競賽參考書
l、中國大學生數學建模競賽,李大潛主編,高等教育出版社(1998). 2、大學生數學建模競賽輔導教材,(一)(二)(三),葉其孝主編,湖南教育 出版社(1993,1997,1998). 3、數學建模教育與國際數學建模競賽 《工科數學》專輯,葉其孝主編, 《工科數學》雜志社,1994).
國內教材、叢書
1、數學模型,姜啟源編,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年國家教委舉辦的第二屆全國優秀教材評選中獲"全國優秀教材獎"). 2、數學模型與計算機模擬,江裕釗、辛培情編,電子科技大學出版社,(1989). 3、數學模型選談(走向數學從書),華羅庚,王元著,王克譯,湖南教育出版社;(1991). 4、數學建模--方法與範例,壽紀麟等編,西安交通大學出版社(1993). 5、數學模型,濮定國、 田蔚文主編,東南大學出版社(1994). 6..數學模型,朱思銘、李尚廉編,中山大學出版社,(1995) 7、數學模型,陳義華編著,重慶大學出版社,(1995) 8、數學模型建模分析,蔡常豐編著,科學出版社,(1995). 9、數學建模競賽教程,李尚志主編,江蘇教育出版社,(1996). 10、數學建模入門,徐全智、楊晉浩編,成都電子科大出版社,(1996). 11、數學建模,沈繼紅、施久玉、高振濱、張曉威編,哈爾濱工程大學出版社,(1996). 12、數學模型基礎,王樹禾編著,中國科學技術大學出版社,(1996). 13、數學模型方法,齊歡編著,華中理工大學出版社,(1996). 14、數學建模與實驗,南京地區工科院校數學建模與工業數學討論班編,河海大學 出版社,(1996). 15、數學模型與數學建模,劉來福、曾文藝編,北京師范大學出版杜(1997). 16. 數學建模,袁震東、洪淵、林武忠、蔣魯敏編,華東師范大學出版社. 17、數學模型,譚永基,俞文吡編,復旦大學出版社,(1997). 18、數學模型實用教程,費培之、程中瑗層主編,四川大學出版社,(1998). 19、數學建模優秀案例選編(工科數學基地建設叢書),汪國強主編,華南理工大學出版社,(1998). 20、經濟數學模型(第二版)(工科數學基地建設叢書),洪毅、賀德化、昌志華 編著,華南理工大學出版社,(1999). 21、數學模型講義,雷功炎編,北京大學出版社(1999). 22、數學建模精品案例,朱道元編著,東南大學出版社,(1999), 23、問題解決的數學模型方法,劉來福,曾文藝編著、北京師范大學出版社,(1999). 24、數學建模的理論與實踐,吳翔,吳孟達,成禮智編著,國防科技大學出版社, (1999). 25、數學建模案例分析,白其嶺主編,海洋出版社,(2000年,北京). 26、數學實驗(高等院校選用教材系列),謝雲蓀、張志讓主編,科學出版社,(2000). 27、數學實驗,傅鵬、龔肋、劉瓊蓀,何中市編,科學出版社,(2000). 28、數學建模與數學實驗,趙靜、但琦編,高等教育出版社,(2000).
國外參考書(中譯本)
1、數學模型引論, E.A。Bender著,朱堯辰、徐偉宣譯,科學普及出版社(1982). 2、數學模型,[門]近藤次郎著,官榮章等譯,機械工業出版社,(1985). 3、微分方程模型,(應用數學模型叢書第1卷),[美]W.F.Lucas主編,朱煜民等 譯,國防科技大學出版社,(1988). 4、政治及有關模型,(應用數學模型叢書第2卷),[美W.F.Lucas主編,王國秋 等譯,國防科技大學出版社,(1996). 5、離散與系統模型,(應用數學模型叢書第3卷),[美w.F.Lucas主編,成禮智 等譯,國防科技大學出版社,(1996). 6、生命科學模型,(應用數學模型叢書第4卷),[美1W.F.Lucas主編,翟曉燕等 譯,國防科技大學出版社,(1996). 7、模型數學--連續動力系統和離散動力系統,[英1H.B.Grif6ths和A.01dknow 著,蕭禮、張志軍編譯,科學出版社,(1996). 8、數學建模--來自英國四個行業中的案例研究,(應用數學譯叢第4號), 英]D.Burglles等著,葉其孝、吳慶寶譯,世界圖書出版公司,(1997)
專業性參考書
(這方面書籍很多,僅列幾本供參考) : 1、水環境數學模型,[德]W.KinZE1bach著,楊汝均、劉兆昌等編纂,中國建築工 業出版社,(1987). 2、科技工程中的數學模型,堪安琦編著,鐵道出版社(1988) 3、生物醫學數學模型,青義學編著,湖南科學技術出版杜(1990). 4、農作物害蟲管理數學模型與應用,蒲蟄龍主編,廣東科技出版社(1990). 5、系統科學中數學模型,歐陽亮編著, E山東大學出版社,(1995). 6、種群生態學的數學建模與研究,馬知恩著,安徽教育出版社,(1996) 7、建模、變換、優化--結構綜合方法新進展,隋允康著,大連理工大學出版社, (1986) 8、遺傳模型分析方法,朱軍著,中國農業出版社(1997). (中山大學數學系王壽松編輯,2001年4月)
過程
模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用
應用方式因問題的性質和建模的目的而異。
1、努力學習數學知識,完善自己的知識體系,尤其是與數學相關的知識體系,比如高等數學、工程數學和應用數學的相關知識;
2、擴充自己的知識面,你可以看到很多賽題都是很現實的社會熱點問題,相關的背景知識是非常必要的;
3、多看一些案例分析的教程,在學習案例分析時的注意點是:如何考慮現實問題中的各個因素,綜合運用所學知識,建立適當的模型;如何進行模型的優化;如何求解模型;如何解釋模型的解。
還要逐步去理解數學建模中最難的三個問題,1、如何用學到的數學思想來表述所面對的問題,所謂的建模。2、應用學到的數學知識解剛剛建立的數學模型,並進行優化。3、將剛剛得到的數學上的解解釋為現實問題中的現象或者是方法。這三個過程體現了一個「現實——>數學——>現實」的一個過程。這其實就是最難的地方。這需要你首先了解面臨的實際問題,然後從現實中轉入數學,再從數學中跳出來回到現實。
4、說到matlab,我建議你借一本matlab手冊做參考書就行了!畢竟matlab只是實現你數學模型的基礎,這不是說matlab不重要,其實matlab也很重要!
祝你快樂!
③ matlab編程動態規劃最短路徑問題
以前搞建模在網上下到的代碼,不是自己編的,但經過試驗可以用,分享了:
function len=dijkstra(Input)
%最短路Dijkstra演算法,同時給出路徑,input為圖矩陣
row=size(Input,1);
%賦初值
% s_path=1;
distance=inf*ones(1,row);
distance(1)=0;
% flag(1)=1;
temp=1;
%求起點到各點的最短路的權
% s_path=ones(1,3);
while length(s_path)<row
pos=find(Input(temp, : )~=inf);
n=length(pos);
flag=ones(1,n);
for i=1:n
if (isempty(find(s_path==pos(i),1)))&&(distance(pos(i))>...
(distance(temp)+Input(temp,pos(i))))
distance(pos(i))=distance(temp)+Input(temp,pos(i));
flag(pos(i))=temp;
end
end
k=inf;
for i=1:row
if (isempty(find(s_path==i,1)))&&(k>distance(i))
k=distance(i);
temp_2=i;
end
end
s_path=[s_path,temp_2];
temp=temp_2;
end
%用追溯法得到起點到各點的最短路的路線
len=zeros(1,row);
for endpoint=1:row
path=0; %初始化
path(1)=endpoint;
i=1;
while path(i)~=1
path(i+1)=flag(path(i));
i=i+1;
end
path(i)=1;
path=path(end:-1:1); %最短路徑
short_distance=distance(endpoint); %最短路徑權
len(endpoint)=short_distance; %起點到各點的最短距離
pathall=path; %總路徑矩陣
end
len=len(25:end);
%{
disp('起點到各點的最短路徑:');
celldisp(pathall);
%設法只畫出最短路徑
em=find(w==inf);
w(em)=0;
h = view(biograph(w,[],'ShowWeights','on'));
%}
郵箱給你發了個資料,多年前搞的,估計是忘了,也許這個函數有點問題,你按資料里的做吧
④ Python之動態規劃演算法
動態規劃演算法中是將復雜問題遞歸分解為子問題,通過解決這些子問題來解決復雜問題。與遞歸演算法相比,動態編程減少了堆棧的使用,避免了重復的計算,效率得到顯著提升。
先來看一個簡單的例子,斐波那契數列.
斐波那契數列的定義如下。
斐波那契數列可以很容易地用遞歸演算法實現:
上述代碼,隨著n的增加,計算量呈指數級增長,演算法的時間復雜度是 。
採用動態規劃演算法,通過自下而上的計算數列的值,可以使演算法復雜度減小到 ,代碼如下。
下面我們再看一個復雜一些的例子。
這是小學奧數常見的硬幣問題: 已知有1分,2分,5分三種硬幣數量不限,用這些硬幣湊成為n分錢,那麼一共有多少種組合方法。
我們將硬幣的種類用列表 coins 定義;
將問題定義為一個二維數組 dp,dp[amt][j] 是使用 coins 中前 j+1 種硬幣( coins[0:j+1] )湊成總價amt的組合數。
例如: coins = [1,2,5]
dp[5][1] 就是使用前兩種硬幣 [1,2] 湊成總和為5的組合數。
對於所有的 dp[0][j] 來說,湊成總價為0的情況只有一種,就是所有的硬幣數量都為0。所以對於在有效范圍內任意的j,都有 dp[0][j] 為1。
對於 dp[amt][j] 的計算,也就是使用 coins[0:j+1] 硬幣總價amt的組合數,包含兩種情況計算:
1.當使用第j個硬幣時,有 dp[amt-coins[j]][j] 種情況,即amt減去第j個硬幣幣值,使用前j+1種硬幣的組合數;
2.當不使用第j個硬幣時,有 dp[amt][j-1] 種情況,即使用前j種硬幣湊成amt的組合數;
所以: dp[amt][j] = dp[amt - coins[j]][j]+dp[amt][j-1]
我們最終得到的結果是:dp[amount][-1]
上述分析省略了一些邊界情況。
有了上述的分析,代碼實現就比較簡單了。
動態規劃演算法代碼簡潔,執行效率高。但是與遞歸演算法相比,需要仔細考慮如何分解問題,動態規劃代碼與遞歸調用相比,較難理解。
我把遞歸演算法實現的代碼也附在下面。有興趣的朋友可以比較一下兩種演算法的時間復雜度有多大差別。
上述代碼在Python 3.7運行通過。