1. 大數據自上而下提升統計和演算法的效率
大數據自上而下提升統計和演算法的效率
我們在去開發這些計算體系時,不管是軟體、計算,其實都是在談大數據分析的概念性,什麼時候出現問題,我們如何達到高准確度,這只是這個問題的開始。其實作為一個計算科學家,我們經常會遇到很多的問題,有些是統計學方面的問題,但是我們沒有聯合統計學家一起考慮和解決這些問題。
比如說這個結果的一致性,那麼還有引導程序的理論,那麼就像常規的引導程序一樣,都會達到一些限值,從上至下的計算,統計學的利弊權衡,什麼意思呢?我們對數據計算的理解,也就是說更多的數據需要更多的計算,更多的計算能力。我們如何來做?到底是並行處理?還是子樣抽取等等。你給我更多的數據,我會更高興,因為我能夠獲得更高的准確度,我的錯誤會更小,我會以更低的成本獲得更正確的答案。對於統計學家來說這是好的,但是對於做計算的來說這個不大好,因為我們將這樣思考這個問題。也就是說給我一些數據,那麼我們有一個新的觀念,叫做控制的演算法弱化,比如說我的數據量不夠,我可以快速的處理它。數據太多,我的處理速度會慢下來。從計算角度來說,控制的演算法能夠讓我更快速的處理數據,也就是演算法的弱化。統計學的角度來說,能夠處理更多的數據,獲得更好的統計學上的答案性能提高。盡管計算的預算成本不變,但是我們能夠處理更多的數據,以更快的速度,我們付出的代價就是演算法的弱化。
那麼,這個坐標你們不經常看,橫軸指我們取樣的數量,縱軸代表的是運行時間。我們看一下到底有多少的錯誤。我們現在就要思考固定風險。比如說在我們錯誤率是0.01,這個座標的區域,對於統計學家來說,如果要固定風險的話,那麼必須有一定數量的樣品,才能夠獲得這樣的結果。所以,這是一個叫做典型的預計理論,大家都非常了解。同樣對於在計算機科學方面,我們有所謂的負載均衡的概念,不管你有多少個樣本,但是你一定要有足夠的運營時間,否則的話,你是無法解決這個問題的,這是非常明確的一點。
所以,我們看一下實際的演算法。有一定的運行時間,有固定的風險,在右邊使用的所有演算法,把演算法弱化,我們就可以處理更多的數據。下面我來談一下,這就是我們所說的問題降噪,所謂降噪就是在數據方面有一些屬於製造噪音的數據。我們如何做降噪?首先,我們假設可能的答案是X這樣的一個分樣,然後用高准確度覆蓋它,所以這是一個推理預估的過程。比如說我要找到X的值,它和Y是非常相似的,這是一個自然的預估。現在X是一個非常復雜的值,我無法做,所以我要做一個凸形的值域,我要做定性,同時可以獲得最優點,我需要把它放在一個可行的規模大小之內,那麼也就是任何一個固定風險都是基於X的。左邊是風險,我需要它的一半,這里存在復雜性,如果想知道更多的復雜性,你們可以看一些所謂理論處理方面的文獻,你們可以讀一下,來做這樣均衡的曲線。
我們看一下相關的內容,如果你要達到一定的風險,你必須要有一定的取樣點。這是一個C,也許這個C也是計算方面很難算出來的,所以我們需要做C子集的,把這個子集進行弱化,這樣我們就可以更好的計算了。我們可以做分層的層級,我們稱為池域,並且根據計算的復雜度進行排序的。同時,還有統計學的復雜性,然後進行一個權衡。你們可以從數學計算出這個曲線。在這里舉個例子,比如說X,剛才已經有人介紹過子集是什麼意思,然後你們可以定運行時間,還有取樣的復雜性,然後可以算出答案。你們看一下簡單的C,復雜的C,然後你們看一下運行的時間是在下降,復雜性是一個恆值,這樣你的演算法更簡單,可以用於大數據,既不會不會增加風險,也可以在舉證方面更加簡化。如果是一個信號的圖值,你的運行時間由PQ值決定,你們還有一個域值的話,我們會有一個恆定的取樣,大家可以同時按照「列」計算,獲得我們預期的准確度,而運行時間不變,大家可以自己看這些公式。
那麼,這種分析我希望大家能夠記住的是和這種理論計算科學,重點就是能夠把准確度放到一個水平。因為我們要去關心有關質量方面、統計學方面的風險,計算科學方面的演算法能夠幫助我們解決比較大的問題,就是大數據帶來的大問題。同時,我們還有很多的數據理論可以適用,我們不要從統計學簡單的角度來考慮,而是從計算的角度考慮。
也許你們還要去學一些統計學方面的基本理論,當然如果你們是學統計學的話,你們也要參加計算機科學的課程。對於兩門都學的人,你們應該把這兩個學科放到一起思考,不是統計學家只考慮統計學,計算機科學家只考慮計算機方面,我們需要解決統計學方面的風險。因此,我們可以更好的處理十萬個采樣點,都不會遇到問題。
2. 衡量演算法效率的方法與准則
演算法效率與分析
數據結構作為程序設計的基礎,其對演算法效率的影響必然是不可忽視的。本文就如何合理選擇數據結構來優化演算法這一問題,對選擇數據結構的原則和方法進行了一些探討。首先對數據邏輯結構的重要性進行了分析,提出了選擇邏輯結構的兩個基本原則;接著又比較了順序和鏈式兩種存儲結構的優點和缺點,並討論了選擇數據存儲結構的方法;最後本文從選擇數據結構的的另一角度出發,進一步探討了如何將多種數據結構進行結合的方法。在討論方法的同時,本文還結合實際,選用了一些較具有代表性的信息學競賽試題舉例進行了分析
【正文】一、引論
「數據結構+演算法=程序」,這就說明程序設計的實質就是對確定的問題選擇一種合適的數據結構,加上設計一種好的演算法。由此可見,數據結構在程序設計中有著十分重要的地位。
數據結構是相互之間存在一種或多種特定關系的數據元素的集合。因為這其中的「關系」,指的是數據元素之間的邏輯關系,因此數據結構又稱為數據的邏輯結構。而相對於邏輯結構這個比較抽象的概念,我們將數據結構在計算機中的表示又稱為數據的存儲結構。
建立問題的數學模型,進而設計問題的演算法,直至編出程序並進行調試通過,這就是我們解決信息學問題的一般步驟。我們要建立問題的數學模型,必須首先找出問題中各對象之間的關系,也就是確定所使用的邏輯結構;同時,設計演算法和程序實現的過程,必須確定如何實現對各個對象的操作,而操作的方法是決定於數據所採用的存儲結構的。因此,數據邏輯結構和存儲結構的好壞,將直接影響到程序的效率。
二、選擇合理的邏輯結構
在程序設計中,邏輯結構的選用就是要分析題目中的數據元素之間的關系,並根據這些特定關系來選用合適的邏輯結構以實現對問題的數學描述,進一步解決問題。邏輯結構實際上是用數學的方法來描述問題中所涉及的操作對象及對象之間的關系,將操作對象抽象為數學元素,將對象之間的復雜關系用數學語言描述出來。
根據數據元素之間關系的不同特性,通常有以下四種基本邏輯結構:集合、線性結構、樹形結構、圖狀(網狀)結構。這四種結構中,除了集合中的數據元素之間只有「同屬於一個集合」的關系外,其它三種結構數據元素之間分別為「一對一」、「一對多」、「多對多」的關系。
因此,在選擇邏輯結構之前,我們應首先把題目中的操作對象和對象之間的關系分析清楚,然後再根據這些關系的特點來合理的選用邏輯結構。尤其是在某些復雜的問題中,數據之間的關系相當復雜,且選用不同邏輯結構都可以解決這一問題,但選用不同邏輯結構實現的演算法效率大不一樣。
對於這一類問題,我們應採用怎樣的標准對邏輯結構進行選擇呢?
下文將探討選擇合理邏輯結構應充分考慮的兩個因素。
一、 充分利用「可直接使用」的信息。
首先,我們這里所講的「信息」,指的是元素與元素之間的關系。
對於待處理的信息,大致可分為「可直接使用」和「不可直接使用」兩類。對於「可直接使用」的信息,我們使用時十分方便,只需直接拿來就可以了。而對於「不可直接使用」的這一類,我們也可以通過某些間接的方式,使之成為可以使用的信息,但其中轉化的過程顯然是比較浪費時間的。
由此可見,我們所需要的是盡量多的「可直接使用」的信息。這樣的信息越多,演算法的效率就會越高。
對於不同的邏輯結構,其包含的信息是不同的,演算法對信息的利用也會出現不同的復雜程度。因此,要使演算法能夠充分利用「可直接使用」的信息,而避免演算法在信息由「不可直接使用」向「可直接使用」的轉化過程中浪費過多的時間,我們必然需要採用一種合理的邏輯結構,使其包含更多「可直接使用」的信息。
〖問題一〗 IOI99的《隱藏的碼字》。
〖問題描述〗
問題中給出了一些碼字和一個文本,要求編程找出文本中包含這些碼字的所有項目,並將找出的項目組成一個最優的「答案」,使得答案中各項目所包含的碼字長度總和最大。每一個項目包括一個碼字,以及該碼字在文本中的一個覆蓋序列(如』abcadc』就是碼字』abac』的一個覆蓋序列),並且覆蓋序列的長度不超過1000。同時,「答案」要求其中每個項目的覆蓋序列互相沒有重疊。
〖問題分析〗
對於此題,一種較容易得出的基本演算法是:對覆蓋序列在文本中的終止位置進行循環,再判斷包含了哪些碼字,找出所有項目,並最後使用動態規劃的方法將項目組成最優的「答案」。
演算法的其它方面我們暫且不做考慮,而先對問題所採用的邏輯結構進行選擇。
如果我們採用線性的邏輯結構(如循環隊列),那麼我們在判斷是否包含某個碼字t時,所用的方法為:初始時用指針p指向終止位置,接著通過p的不斷前移,依次找出碼字t從尾到頭的各個字母。例如碼字為「ABDCAB」,而文本圖1-1,終止位置為最右邊的箭頭符號,每個箭頭代表依次找到的碼字的各個字母。
指針p的移動方向
A B D C A B
C D A C B D C A D C D B A D C C B A D
圖1-1
由於題目規定碼字的覆蓋序列長度不超過1000,所以進行這樣的一次是否包含的判斷,其復雜度為O(1000)。
由於碼字t中相鄰兩字母在文本中的位置,並非只有相鄰(如圖1-1中的』D』和』C』)這一種關系,中間還可能間隔了許多的字母(如圖1-1中』C』和』A』就間隔了2個字母),而線性結構中擁有的信息,僅僅只存在於相鄰的兩元素之間。通過這樣簡單的信息來尋找碼字的某一個字母,其效率顯然不高。
如果我們建立一個有向圖,其中頂點i(即文本的第i位)用52條弧分別連接』a』..』z』,』A』..』Z』這52個字母在i位以前最後出現的位置(如圖1-2的連接方式),我們要尋找碼字中某個字母的前一個字母,就可以直接利用已連接的邊,而不需用枚舉的方法。我們也可以把問題看為:從有向圖的一個頂點出發,尋找一條長度為length(t)-1的路徑,並且路徑中經過的頂點,按照碼字t中的字母有序。
C D A C B D C A D C D B A D C C B A D
圖1-2
通過計算,用圖進行記錄在空間上完全可以承受(記錄1000個點×52條弧×4位元組的長整型=200k左右)。在時間上,由於可以充分利用第i位和第i+1位弧的連接方式變化不大這一點(如圖1-2所示,第i位和第i+1位只有一條弧的指向發生了變化,即第i+1位將其中一條弧指向了第i位),所以要對圖中的弧進行記錄,只需對弧的指向進行整體賦值,並改變其中的某一條弧即可。
因此,我們通過採用圖的邏輯結構,使得尋找字母的效率大大提高,其判斷的復雜度為O(length(t)),最壞為O(100),比原來方法的判斷效率提高了10倍。
(附程序codes.pas)
對於這個例子,雖然用線性的數據結構也可以解決,但由於判斷的特殊性,每次需要的信息並不能從相鄰的元素中找到,而線性結構中只有相鄰元素之間存在關系的這一點,就成為了一個很明顯的缺點。因此,問題一線性結構中的信息,就屬於「不可直接使用」的信息。相對而言,圖的結構就正好滿足了我們的需要,將所有可能產生關系的點都用弧連接起來,使我們可以利用弧的關系,高效地進行判斷尋找的過程。雖然圖的結構更加復雜,但卻將「不可直接使用」的信息,轉化成為了「可直接使用」的信息,演算法效率的提高,自然在情理之中。。
二、 不記錄「無用」信息。
從問題一中我們看到,由於圖結構的信息量大,所以其中的信息基本上都是「可用」的。但是,這並不表示我們就一定要使用圖的結構。在某些情況下,圖結構中的「可用」信息,是有些多餘的。
信息都「可用」自然是好事,但倘若其中「無用」(不需要)的信息太多,就只會增加我們思考分析和處理問題時的復雜程度,反而不利於我們解決問題了。
〖問題二〗 湖南省1997年組隊賽的《乘船問題》
〖問題描述〗
有N個人需要乘船,而每船最多隻能載兩人,且必須同名或同姓。求最少需要多少條船。
〖問題分析〗
看到這道題,很多人都會想到圖的數據結構:將N個人看作無向圖的N個點,凡同名或同姓的人之間都連上邊。
要滿足用船最少的條件,就是需要盡量多的兩人共乘一條船,表現在圖中就是要用最少的邊完成對所有頂點的覆蓋。這就正好對應了圖論的典型問題:求最小邊的覆蓋。所用的演算法為「求任意圖最大匹配」的演算法。
使用「求任意圖最大匹配」的演算法比較復雜(要用到擴展交錯樹,對花的收縮等等),效率也不是很高。因此,我們必須尋找一個更簡單高效的方法。
首先,由於圖中任兩個連通分量都是相對獨立的,也就是說任一條匹配邊的兩頂點,都只屬於同一個連通分量。因此,我們可以對每個連通分量分別進行處理,而不會影響最終的結果。
同時,我們還可以對需要船隻s的下限進行估計:
對於一個包含Pi個頂點的連通分量,其最小覆蓋邊數顯然為[Pi/2]。若圖中共有L個連通分量,則s=∑[Pi/2](1<=i<=L)。
然後,我們通過多次嘗試,可得出一個猜想:
實際需要的覆蓋邊數完全等於我們求出的下限∑[Pi/2](1<=i<=L)。
要用圖的結構對上述猜想進行證明,可參照以下兩步進行:
1. 連通分量中若不存在度為1的點,就必然存在迴路。
2. 從圖中刪去度為1的點及其相鄰的點,或刪去迴路中的任何一邊,連通分量依然連通,即連通分量必然存在非橋邊。
由於圖的方法不是這里的重點,所以具體證明不做詳述。而由採用圖的數據結構得出的演算法為:每次輸出一條非橋的邊,並從圖中將邊的兩頂點刪去。此演算法的時間復雜度為O(n3)。(尋找一條非橋邊的復雜度為O(n2),尋找覆蓋邊操作的復雜度為O(n))
由於受到圖結構的限制,時間復雜度已經無法降低,所以如果我們要繼續對演算法進行優化,只有考慮使用另一種邏輯結構。這里,我想到了使用二叉樹的結構,具體說就是將圖中的連通分量都轉化為二叉樹,用二叉樹來解決問題。
首先,我們以連通分量中任一個頂點作為樹根,然後我們來確定建樹的方法。
1. 找出與根結點i同姓的點j(j不在二叉樹中)作為i的左兒子,再以j為樹根建立子樹。
2. 找出與根結點i同名的點k(k不在二叉樹中)作為i的右兒子,再以k為樹根建立子樹。
如圖2-1-1中的連通分量,我們通過上面的建樹方法,可以使其成為圖2-1-2中的二叉樹的結構(以結點1為根)。(兩點間用實線表示同姓,虛線表示同名)
圖2-1-2
圖2-1-1
接著,我就來證明這棵樹一定包含了連通分量中的所有頂點。
【引理2.1】
若二叉樹T中包含了某個結點p,那麼連通分量中所有與p同姓的點一定都在T中。
證明:
為了論證的方便,我們約定:s表示與p同姓的頂點集合;lc[p,0]表示結點p,lc[p,i](i>0)表示lc[p,i-1]的左兒子,顯然lc[p,i]與p是同姓的。
假設存在某個點q,滿足qs且qT。由於s是有限集合,因而必然存在某個lc[p,k]無左兒子。則我們可以令lc[p,k+1]=q,所以qT,與假設qT相矛盾。
所以假設不成立,原命題得證。
由引理2.1的證明方法,我們同理可證引理2.2。
【引理2.2】
若二叉樹T中包含了某個結點p,那麼連通分量中所有與p同名的點一定都在T中。
有了上面的兩個引理,我們就不難得出下面的定理了。
【定理一】
以連通分量中的任一點p作為根結點的二叉樹,必然能夠包含連通分量中的所有頂點。
證明:
由引理2.1和引理2.2,所有與p同姓或同名的點都一定在二叉樹中,即連通分量中所有與p有邊相連的點都在二叉樹中。由連通分量中任兩點間都存在路徑的特性,該連通分量中的所有點都在二叉樹中。
在證明二叉樹中包含了連通分量的所有頂點後,我們接著就需要證明我們的猜想,也就是下面的定理:
【定理二】包含m個結點的二叉樹Tm,只需要船的數量為boat[m]=[m/2](mN)。
證明:
(i) 當m=1,m=2,m=3時命題顯然成立。
圖2-2-1
圖2-2-2
圖2-2-3
(ii) 假設當m<k(k>3)時命題成立,那麼當m=k時,我們首先從樹中找到一個層次最深的結點,並假設這個結點的父親為p。那麼,此時有且只有以下三種情況(結點中帶有陰影的是p結點):
(1) 如圖2-2-1,p只有一個兒子。此時刪去p和p唯一的兒子,Tk就成為了Tk-2,則boat[k]=boat[k-2]+1=[(k-2)/2]+1=[k/2]。
(2) 如圖2-2-2,p有兩個兒子,並且p是其父親的左兒子。此時可刪去p和p的右兒子,並可將p的左兒子放到p的位置上。同樣地,Tk成為了Tk-2,boat[k]=boat[k-2]+1=[k/2]。
(3) 如圖2-2-3,p有兩個兒子,並且p是其父親的右兒子。此時可刪去p和p的左兒子,並可將p的右兒子放到p的位置上。情況與(2)十分相似,易得此時得boat[k]=boat[k-2]+1=[k/2]。
綜合(1)、(2)、(3),當m=k時,boat[k]=[k/2]。
最後,綜合(i)、(ii),對於一切mN,boat[m]=[m/2]。
由上述證明,我們將問題中數據的圖結構轉化為樹結構後,可以得出求一棵二叉樹的乘船方案的演算法:
proc try(father:integer;var root:integer;var rest:byte);
{輸出root為樹根的子樹的乘船方案,father=0表示root是其父親的左兒子,
father=1表示root是其父親的右兒子,rest表示輸出子樹的乘船方案後,
是否還剩下一個根結點未乘船}
begin
visit[root]:=true; {標記root已訪問}
找到一個與root同姓且未訪問的結點j;
if j<>n+1 then try(0,j,lrest);
找到一個與root同姓且未訪問的結點k;
if k<>n+1 then try(1,k,rrest);
if (lrest=1) xor (rrest=1) then begin {判斷root是否只有一個兒子,情況一}
if lrest=1 then print(lrest,root) else print(rrest,root);
rest:=0;
end
else if (lrest=1) and (rrest=1) then begin {判斷root是否有兩個兒子}
if father=0 then begin
print(rrest,root);root:=j; {情況二}
end
else begin
print(lrest,root);root:=k; {情況三}
end;
rest:=1;
end
else rest:=1;
end;
這只是輸出一棵二叉樹的乘船方案的演算法,要輸出所有人的乘船方案,我們還需再加一層循環,用於尋找各棵二叉樹的根結點,但由於每個點都只會訪問一次,尋找其左右兒子各需進行一次循環,所以演算法的時間復雜度為O(n2)。(附程序boat.pas)
最後,我們對兩種結構得出不同時間復雜度演算法的原因進行分析。其中最關鍵的一點就是因為二叉樹雖然結構相對較簡單,但已經包含了幾乎全部都「有用」的信息。由我們尋找乘船方案的演算法可知,二叉樹中的所有邊不僅都發揮了作用,而且沒有重復的使用,可見信息的利用率也是相當之高的。
既然採用樹結構已經足夠,圖結構中的一些信息就顯然就成為了「無用」的信息。這些多餘的「無用」信息,使我們在分析問題時難於發現規律,也很難找到高效的演算法進行解決。這正如迷宮中的牆一樣,越多越難走。「無用」的信息,只會干擾問題的規律性,使我們更難找出解決問題的方法。
小結
我們對數據的邏輯結構進行選擇,是構造數學模型一大關鍵,而演算法又是用來解決數學模型的。要使演算法效率高,首先必須選好數據的邏輯結構。上面已經提出了選擇邏輯結構的兩個條件(思考方向),總之目的是提高信息的利用效果。利用「可直接使用」的信息,由於中間不需其它操作,利用的效率自然很高;不不記錄「無用」的信息,就會使我們更加專心地研究分析「有用」的信息,對信息的使用也必然會更加優化。
總之,在解決問題的過程中,選擇合理的邏輯結構是相當重要的環
三、 選擇合理的存儲結構
數據的存儲結構,分為順序存儲結構和鏈式存儲結構。順序存儲結構的特點是藉助元素在存儲器中的相對位置來表示數據元素之間的邏輯關系;鏈式存儲結構則是藉助指示元素存儲地址的指針表示數據元素之間的邏輯關系。
因為兩種存儲結構的不同,導致這兩種存儲結構在具體使用時也分別存在著優點和缺點。
這里有一個較簡單的例子:我們需要記錄一個n×n的矩陣,矩陣中包含的非0元素為m個。
此時,我們若採用順序存儲結構,就會使用一個n×n的二維數組,將所有數據元素全部記錄下來;若採用鏈式存儲結構,則需要使用一個包含m個結點的鏈表,記錄所有非0的m個數據元素。由這樣兩種不同的記錄方式,我們可以通過對數據的不同操作來分析它們的優點和缺點。
1. 隨機訪問矩陣中任意元素。由於順序結構在物理位置上是相鄰的,所以可以很容易地獲得任意元素的存儲地址,其復雜度為O(1);對於鏈式結構,由於不具備物理位置相鄰的特點,所以首先必須對整個鏈表進行一次遍歷,尋找需進行訪問的元素的存儲地址,其復雜度為O(m)。此時使用順序結構顯然效率更高。
2. 對所有數據進行遍歷。兩種存儲結構對於這種操作的復雜度是顯而易見的,順序結構的復雜度為O(n2),鏈式結構為O(m)。由於在一般情況下m要遠小於n2,所以此時鏈式結構的效率要高上許多。
除上述兩種操作外,對於其它的操作,這兩種結構都不存在很明顯的優點和缺點,如對鏈表進行刪除或插入操作,在順序結構中可表示為改變相應位置的數據元素。
既然兩種存儲結構對於不同的操作,其效率存在較大的差異,那麼我們在確定存儲結構時,必須仔細分析演算法中操作的需要,合理地選擇一種能夠「揚長避短」的存儲結構。
一、合理採用順序存儲結構。
我們在平常做題時,大多都是使用順序存儲結構對數據進行存儲。究其原因,一方面是出於順序結構操作方便的考慮,另一方面是在程序實現的過程中,使用順序結構相對於鏈式結構更便於對程序進行調試和查找錯誤。因此,大多數人習慣上認為,能夠使用順序結構進行存儲的問題,最「好」採用順序存儲結構。
其實,這個所謂的「好」只是一個相對的標准,是建立在以下兩個前提條件之下的:
1. 鏈式結構存儲的結點與順序結構存儲的結點數目相差不大。這種情況下,由於存儲的結點數目比較接近,使用鏈式結構完全不能體現出記錄結點少的優點,並且可能會由於指針操作較慢而降低演算法的效率。更有甚者,由於指針自身佔用的空間較大,且結點數目較多,因而演算法對空間的要求可能根本無法得到滿足。
2. 並非演算法效率的瓶頸所在。由於不是演算法最費時間的地方,這里是否進行改進,顯然是不會對整個演算法構成太大影響的,若使用鏈式結構反而會顯得操作過於繁瑣。
二、必要時採用鏈式存儲結構。
上面我對使用順序存儲結構的條件進行了分析,最後就只剩下何時應該採用鏈式存儲結構的問題了。
由於鏈式結構中指針操作確實較繁瑣,並且速度也較慢,調試也不方便,因而大家一般都不太願意用鏈式的存儲結構。但是,這只是一般的觀點,當鏈式結構確實對演算法有很大改進時,我們還是不得不進行考慮的。
〖問題三〗 IOI99的《地下城市》。
〖問題描述〗
已知一個城市的地圖,但未給出你的初始位置。你需要通過一系列的移動和探索,以確定初始時所在的位置。題目的限制是:
1. 不能移動到有牆的方格。
2. 只能探索當前所在位置四個方向上的相鄰方格。
在這兩個限制條件下,要求我們的探索次數(不包括移動)盡可能的少。
〖問題分析〗
由於存儲結構要由演算法的需要確定,因此我們首先來確定問題的演算法。
經過對問題的分析,我們得出解題的基本思想:先假設所有無牆的方格都可能是初始位置,再通過探索一步步地縮小初始位置的范圍,最終得到真正的初始位置。同時,為提高演算法效率,我們還用到了分治的思想,使我們每一次探索都盡量多的縮小初始位置的范圍(使程序盡量減少對運氣的依賴)。
接著,我們來確定此題的存儲結構。
由於這道題的地圖是一個二維的矩陣,所以一般來講,採用順序存儲結構理所當然。但是,順序存儲結構在這道題中暴露了很大的缺點。我們所進行的最多的操作,一是對初始位置的范圍進行篩選,二是判斷要選擇哪個位置進行探索。而這兩種操作,所需要用到的數據,只是龐大地圖中很少的一部分。如果採用順序存儲結構(如圖3-1中陰影部分表示已標記),無論你需要用到多少數據,始終都要完全的遍歷整個地圖。
4
3
2
1
1 2 3 4
圖3-1
head
圖3-2
然而,如果我們採用的是鏈式存儲結構(如圖3-2的鏈表),那麼我們需要多少數據,就只會遍歷多少數據,這樣不僅充分發揮了鏈式存儲結構的優點,而且由於不需單獨對某一個數據進行提取,每次都是對所有數據進行判斷,從而避免了鏈式結構的最大缺點。
我們使用鏈式存儲結構,雖然沒有降低問題的時間復雜度(鏈式存儲結構在最壞情況下的存儲量與順序存儲結構的存儲量幾乎相同),但由於體現了前文所述選擇存儲結構時揚長避短的原則,因而演算法的效率也大為提高。(程序對不同數據的運行時間見表3-3)
測試數據編號 使用順序存儲結構的程序 使用鏈式存儲結構的程序
1 0.06s 0.02s
2 1.73s 0.07s
3 1.14s 0.06s
4 3.86s 0.14s
5 32.84s 0.21s
6 141.16s 0.23s
7 0.91s 0.12s
8 6.92s 0.29s
9 6.10s 0.23s
10 17.41s 0.20s
表3-3
(附使用鏈式存儲結構的程序under.pas)
我們選擇鏈式的存儲結構,雖然操作上可能稍復雜一些,但由於改進了演算法的瓶頸,演算法的效率自然也今非昔比。由此可見,必要時選擇鏈式結構這一方法,其效果是不容忽視的。
小結
合理選擇邏輯結構,由於牽涉建立數學模型的問題,可能大家都會比較注意。但是對存儲結構的選擇,由於不會對演算法復雜度構成影響,所以比較容易忽視。那麼,這種不能降低演算法復雜度的方法是否需要重視呢?
大家都知道,剪枝作為一種常用的優化演算法的方法,被廣泛地使用,但剪枝同樣是無法改變演算法的復雜度的。因此,作用與剪枝相似的存儲結構的合理選擇,也是同樣很值得重視的。
總之,我們在設計演算法的過程中,必須充分考慮存儲結構所帶來的不同影響,選擇最合理的存儲結構。
四、 多種數據結構相結合
上文所探討的,都是如何對數據結構進行選擇,其中包含了邏輯結構的選擇和存儲結構的選擇,是一種具有較大普遍性的演算法優化方法。對於多數的問題,我們都可以通過選擇一種合理的邏輯結構和存儲結構以達到優化演算法的目的。
但是,有些問題卻往往不如人願,要對這類問題的數據結構進行選擇,常常會顧此失彼,有時甚至根本就不存在某一種合適的數據結構。此時,我們是無法選擇出某一種合適的數據結構的,以上的方法就有些不太適用了。
為解決數據結構難以選擇的問題,我們可以採用將多種數據結構進行結合的方法。通過多種數據結構相結合,達到取長補短的作用,使不同的數據結構在演算法中發揮出各自的優勢。
這只是我們將多種數據結構進行結合的總思想,具體如何進行結合,我們可以先看下面的例子。
我們可以採用映射的方法,將線性結構中的元素與堆中間的結點一一對應起來,若線性的數組中的元素發生變化,堆中相應的結點也接著變化,堆中的結點發生變化,數組中相應的元素也跟著變化。
將兩種結構進行結合後,無論是第一步還是第二步,我們都不需對所有元素進行遍歷,只需進行常數次復雜度為O(log2n)的堆化操作。這樣,整個時間復雜度就成為了O(nlog2n),演算法效率無疑得到了很大提高。
五、 總結
我們平常使用數據結構,往往只將其作為建立模型和演算法實現的工具,而沒有考慮這種工具對程序效率所產生的影響。信息學問題隨著難度的不斷增大,對演算法時空效率的要求也越來越高,而演算法的時空效率,在很大程度上都受到了數據結構的制約。