『壹』 linux內存分配默認是多少位元組對齊
VC和GCC默認的都是4位元組對齊,編程中可以使用#pragma pack(n)指定對齊模數。出現以上差異的原因在於,VC和GCC中對於double類型的對齊方式不同。
Win32平台下的微軟VC編譯器在默認情況下採用如下的對齊規則: 任何基本數據類型T的對齊模數就是T的大小,即sizeof(T)。比如對於double類型(8位元組),就要求該類型數據的地址總是8的倍數,而char類型數據(1位元組)則可以從任何一個地址開始。
Linux下的GCC奉行的是另外一套規則:任何2位元組大小(包括單位元組嗎?)的數據類型(比如short)的對齊模數是2,而其它所有超過2位元組的數據類型(比如long,double)都以4為對齊模數。
復雜類型(如結構)的默認對齊方式是它最長的成員的對齊方式,這樣在成員是復雜類型時,可以最小化長度。
struct{char a;double b;}
在VC中,因為結構中存在double和char,按照最長數據類型對齊,char只佔1B,但是加上後面的double所佔空間超過8B,所以char獨佔8B;而double佔8B,一共16Byte。
在GCC中,double長度超過4位元組,按照4位元組對齊,原理同上,不過char佔4位元組,double占兩個4位元組,一共12Byte。
『貳』 我想問下,內存的邏輯地址是不是由操作系統(如:windows linux)來分配的啊謝謝
windows內存的邏輯地址是由罩清操作系統分配的,當程序裝入內存時,操作系統要為之分配一個合適的內存空間,程序邏輯地址與所分配到的內存物理地址編號是不一致的
,線性地址(Linear Address) 是邏輯地址到唯雹物理地址變換之間的中間層。
Linux內核程序占據在物理內存的開始部分,接下來是供硬碟等塊設備使用的高速緩沖區部分(其中要扣除顯卡內存和ROM BIOS所佔用的內存地址范指悶帆圍)
當一個進程需要讀取塊設備中的數據時,系統會首先把數據讀到高速緩沖區中。當有數據需要寫到塊設備上去時,系統也是先將數據放到高速緩沖區中,然後由塊設備驅動程序寫到相應的設備上。內存的最後部分是可供所有程序隨時申請和使用的主內存區。內核在使用主內存區時,首先要向內核內存管理模塊提出申請,並在申請成功後方能使用。
『叄』 Linux用戶空間內存分配原則
在用戶空間中動態申請內存的函數為malloc (),這個函數在各種操作系統上的使用都是一致的,malloc ()申請的內存的釋放函數為free()。對於Linux而言,C庫的malloc ()函數一般通過brk ()和mmap ()兩個系統調用從內核申請內存。由於用戶空間C庫的malloc演算法實際上具備一個二次管理能力,所以並不是每次申請和釋放內存都一定伴隨著對內核的系統調用。如,應用程序可以從內核拿到內存後,立即調用free(),由於free()之前調用了mallopt(M_TRIM_THRESHOLD,一1)和mallopt (M_MMAP_MAX,0),這個free ()並不會把內存還給內核,而只是還給了C庫的分配演算法(內存仍然屬於這個進程),因此之後所有的動態內存申請和釋放都在用戶態下進行。另外,Linux內核總是採用按需調頁(Demand Paging),因此當malloc ()返回的時候,雖然是成功返回,但是內核並沒有真正給這個進程內存,這個時候如果去讀申請的內存,內容全部是0,這個頁面的映射是只讀的。只有當寫到某個頁面的時候,內核才在頁錯誤後,真正把這個頁面給這個進程。在Linux內核空間中申請內存涉及的函數主要包括kmalloc( ) 、get free pages ( )和vmalloc ()等。kmalloc ()和_get_free pages ()(及其類似函數)申請的內存位於DMA和常規區域的映射區,而且在物理上也是連續的,它們與真實的物理地址只有一個固定的偏移,因此存在較簡單的轉換關系。而vmalloc()在虛擬內存空間給出一塊連續的內存區,實質上,這片連續的虛擬內存在物理內存中並不一定連續,而vmalloc ()申請的虛擬內存和物理內存之間也沒有簡單的換算關系。
『肆』 操作系統執行可執行程序時,內存分配是怎樣的
在操作系統中,一個進程就是處於執行期的程序(當然包括系統資源),實際上正在執行的程序代碼的活標本。那麼進程的邏輯地址空間是如何劃分的呢?
圖1做了簡單的說明(Linux系統下的):
圖一
左邊的是UNIX/LINUX系統的執行文件,右邊是對應進程邏輯地址空間的劃分情況。
一般認為在c中分為這幾個存儲區: 1. 棧 --有編譯器自動分配釋放 2. 堆 -- 一般由程序員分配釋放,若程序員不釋放,程序結束時可能由OS回收 3. 全局區(靜態區) -- 全局變數和靜態變數的存儲是放在一塊的,初始化的全局變數和靜態變數在一塊區域,未初始化的全局變數和未初始化的靜態變數在相鄰的另一塊區域。程序結束釋放。 4. 另外還有一個專門放常量的地方。程序結束釋放。 在函數體中定義的變數通常是在棧上,用malloc, calloc, realloc等分配內存的函數分配得到的就是在堆上。在所有函數體外定義的是全局量,加了static修飾符後不管在哪裡都存放在全局區(靜態區),在所有函數體外定義的static變數表示在該文件中有效,不能extern到別的文件用,在函數體內定義的static表示只在該函數體內有效。另外,函數中的"adgfdf"這樣的字元串存放在常量區。比如:代碼:
int a = 0; //全局初始化區
char *p1; //全局未初始化區
main(){
int b; //棧
char s[] = "abc"; //棧
char *p2; //棧
char *p3 = "123456"; //123456 在常量區,p3在棧上。
static int c = 0; //全局(靜態)初始化區
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);//分配得來得10和20位元組的區域就在堆區。
strcpy(p1, "123456");//123456 放在常量區,編譯器可能會將它與p3所指向 的"123456"優化成一塊。
}
還有就是函數調用時會在棧上有一系列的保留現場及傳遞參數的操作。 棧的空間大小有限定,vc的預設是2M。棧不夠用的情況一般是程序中分配了大量數組和遞歸函數層次太深。有一點必須知道,當一個函數調用完返回後它會釋放該函數中所有的棧空間。棧是由編譯器自動管理的,不用你操心。 堆是動態分配內存的,並且你可以分配使用很大的內存。但是用不好會產生內存泄漏。並且頻繁地malloc和free會產生內存碎片(有點類似磁碟碎片),因為c分配動態內存時是尋找匹配的內存的。而用棧則不會產生碎片。 在棧上存取數據比通過指針在堆上存取數據快些。 一般大家說的堆棧和棧是一樣的,就是棧(stack),而說堆時才是堆heap. 棧是先入後出的,一般是由高地址向低地址生長。
堆(heap)和堆棧(stack)的區別
2.1申請方式stack:由系統自動分配。 例如,聲明在函數中一個局部變數 int b; 系統自動在棧中為b開辟空間heap:需要程序員自己申請,並指明大小,在c中malloc函數
如p1 = (char *)malloc(10);
在C++中用new運算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在棧中的。
2.2 申請後系統的響應棧:只要棧的剩餘空間大於所申請空間,系統將為程序提供內存,否則將報異常提示棧溢出。堆:首先應該知道操作系統有一個記錄空閑內存地址的鏈表,當系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閑結點鏈表中刪除,並將該結點的空間分配給程序,另外,對於大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閑鏈表中。
2.3
2.4申請效率的比較:棧由系統自動分配,速度較快。但程序員是無法控制的。堆是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便.另外,在WINDOWS下,最好的方式是用VirtualAlloc分配內存,他不是在堆,也不是在棧是直接在進程的地址空間中保留一快內存,雖然用起來最不方便。但是速度快,也最靈活。
2.5堆和棧中的存儲內容棧: 在函數調用時,第一個進棧的是主函數中後的下一條指令(函數調用語句的下一條可執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然後是函數中的局部變數。注意靜態變數是不入棧的。當本次函數調用結束後,局部變數先出棧,然後是參數,最後棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。堆:一般是在堆的頭部用一個位元組存放堆的大小。堆中的具體內容有程序員安排。
2.6存取效率的比較
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在運行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的數組比指針所指向的字元串(例如堆)快。
比如:#include <...>
void main(){
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
對應的匯編代碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字元串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到edx中,在根據edx讀取字元,顯然慢了。
2.7小結:堆和棧的區別可以用如下的比喻來看出:使用棧就象我們去飯館里吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等准備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。使用堆就象是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由度大。堆和棧的區別主要分:操作系統方面的堆和棧,如上面說的那些,不多說了。還有就是數據結構方面的堆和棧,這些都是不同的概念。這里的堆實際上指的就是(滿足堆性質的)優先隊列的一種數據結構,第1個元素有最高的優先權;棧實際上就是滿足先進後出的性質的數學或數據結構。雖然堆棧,堆棧的說法是連起來叫,但是他們還是有很大區別的,連著叫只是由於歷史的原因。
申請大小的限制棧:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在 WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因此,能從棧獲得的空間較小。堆:堆是向高地址擴展的數據結構,是不連續的內存區域。這是由於系統是用鏈表來存儲的空閑內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。一、預備知識—程序的內存分配一個由c/C++編譯的程序佔用的內存分為以下幾個部分
1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變數的值等。其操作方式類似於數據結構中的棧。2、堆區(heap)— 一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS回收 。注意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表,呵呵。3、全局區(靜態區)(static)—全局變數和靜態變數的存儲是放在一塊的,初始化的全局變數和靜態變數在一塊區域, 未初始化的全局變數和未初始化的靜態變數在相鄰的另一塊區域。 - 程序結束後有系統釋放4、文字常量區 —常量字元串就是放在這里的。 程序結束後由系統釋放5、程序代碼區(text)—存放函數體的二進制代碼。