⑴ 求加法心算速算口訣或技巧
加法速算技巧
1、 不進位的加法算式:(一定要先看清楚進不進位)
加法速算技巧
A :兩位數加一位數:先寫上十位數,再接著寫上個位數的和。
B 兩位數加兩位數:先寫十位數的和,再寫個位數的和
C 多位數加多位數:從高位起,依次寫上相同位上的數的和
2、進位加法算式(一定要觀察是否進位)
加法速算技巧進位加法的關鍵是向高一位進1,進1既然已經是一定的事情,可不可以先進1呢?觀察好後可以從高位先算起。
A 兩位數加一位數:先寫上十位數加1的和,再接著寫個位數的和的個位數(用二十以內加法口訣)
B 兩位數加一位數:先寫上兩位數湊成整十後的十位數,再寫上一位數分出一個數後剩餘的數。(即把一位數分開,幫兩 位數湊十)
加法速算技巧 15+8= 過程:15+5=20 先寫2,8分出5後剩餘3,再接著寫3。
(1)完全數速演算法擴展閱讀:
加法是完全一致的事物也就是同類事物的重復或累計,是數字運算的開始,不同類比如一個蘋果+一個橘子其結果只能等於二個水果就存在分類與歸類的關系。
減法是加法的逆運算;乘法是加法的特殊形式;除法是乘法的逆運算;乘方是乘法的簡便形式;開方是乘方的逆運算;對數是在乘方的各項中尋找規律;由對數而發展出導數;然後是微分和積分。數字運算的發展,是更特殊的情況,更高度重復下的規律。
有許多二進制操作可以被視為對實數的加法運算的概括。 抽象代數領域集中關注這種廣義的運算,它們也出現在集合理論和類別理論中。
抽象代數中的加法
矢量加法:
在線性代數中,向量空間是一個代數結構,允許添加任何兩個向量和縮放向量。 一個熟悉的向量空間是所有有序的實數對的集合;有序對(a,b)被解釋為從歐幾里德平面中的原點到平面中的點(a,b)的向量。 通過添加它們各自的坐標來獲得兩個向量的和:
集合理論和類別理論中的加法
增加自然數的方法是在集合理論中添加序數和基數。這些給出了兩個不同的概括,即自然數。與大多數加法操作不同,序數的加法是不可交換的。 然而,增加基數是與不相交聯合操作密切相關的交換操作。
在類別理論中,不相交加法被視為特殊情況,一般可能是所有加法概括中最為抽象的。 如直接總和和楔子總和,被命名為添加的聯系。
⑵ 小學加減法速算方法與技巧
小學加減法速算方法與技巧如下:個位數是「1」 速算口訣:頭乘頭,頭加頭,尾是1(頭加頭如果超過10要進位)。十位數是「1」 速算口訣:頭是1,尾加為,尾乘尾(超過10要進位)。
兩位數相減,個位數相同,直接減成0。兩位數相減,減數比被減數個位數大,直接相減。兩位數相減,減數比被減數個位數小,將被減數拆分成和減數個位相同。
轉換成兩個簡單乘法和一個加法。具體方法是:乘數十幾用字母和數學方法表示出來就是10+a,這里的a是一個一位數,另一個乘數用b表示、也是一個一位數
則算式就是(10+a)*b,這個代數式採用乘法分配律展開就是10*b+a*b,這樣算式就是一個10的整數倍加上兩個一位數的乘積了,完全可以口算得出結果。
⑶ 行測數量關系十大技巧
★【速算技巧一:估演算法】
「估演算法」毫無疑問是資料分析題當中的速算第一法,在所有計算進行之前必須考慮能否先行估算。所謂估算,是在精度要求並不太高的情況下,進行粗略估值的速算方式,一般在選項相差較大,或者在被比較數據相差較大的情況下使用。估算的方式多樣,需要各位考生在實戰中多加訓練與掌握。
進行估算的前提是選項或者待比較的數字相差必須比較大,並且這個差別的大小決定了「估算」時候的精度要求。
★【速算技巧二:直除法】
「直除法」是指在比較或者計算較復雜分數時,通過「直接相除」的方式得到商的首位(首一位或首兩位),從而得出正確答案的速算方式。「直除法」在資料分析的速算當中有非常廣泛的用途,並且由於其「方式簡單」而具有「極易操作」性。
「直除法」從題型上一般包括兩種形式:
一、比較多個分數時,在量級相當的情況下,首位最大/小的數為最大/小數;
二、計算一個分數時,在選項首位不同的情況下,通過計算首位便可選出正確答案。
「直除法」從難度深淺上來講一般分為三種梯度:
一、簡單直接能看出商的首位;
二、通過動手計算能看出商的首位;
三、某些比較復雜的分數,需要計算分數的「倒數」的首位來判定答案。
★【速算技巧三:截位法】
所謂「截位法」,是指「在精度允許的范圍內,將計算過程當中的數字截位(即只看或者只取前幾位),從而得到精度足夠的計算結果」的速算方式。在加法或者減法中使用「截位法」時,直接從左邊高位開始相加或者相減(同時注意下一位是否需要進位與錯位),知道得到選項要求精度的答案為止。在乘法或者除法中使用「截位法」時,為了使所得結果盡可能精確,需要注意截位近似的方向:
一、擴大(或縮小)一個乘數因子,則需縮小(或擴大)另一個乘數因子;
二、擴大(或縮小)被除數,則需擴大(或縮小)除數。
如果是求「兩個乘積的和或者差(即a*b+/-c*d),應該注意:
三、擴大(或縮小)加號的一側,則需縮小(或擴大)加號的另一側;
四、擴大(或縮小)減號的一側,則需擴大(或縮小)減號的另一側。
到底採取哪個近似方向由相近程度和截位後計算難度決定。
一般說來,在乘法或者除法中使用」截位法「時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定;在誤差較小的情況下,計算過程中的數據甚至可以不滿足上述截位方向的要求。所以應用這種方法時,需要考生在做題當中多加熟悉與訓練誤差的把握,在可以使用其它方式得到答案並且截位誤差可能很大時,盡量避免使用乘法與除法的截位法。
★【速算技巧四:化同法】
所謂」化同法」,是指「在比較兩個分數大小時,將這兩個分數的分子或分母化為相同或相近,從而達到簡化計算」的速算方式。一般包括三個層次:
一、將分子(分母)化為完全相同,從而只需要再看分母(或分子)即可;
二、將分子(或分母)化為相近之後,出現「某一個分數的分母較大而分子較小」或「某一個分數的分母較小而分子較大」的情況,則可直接判斷兩個分數的大小。
★【速算技巧五:差分法】
「差分法」是在比較兩個分數大小時,用「直除法」或者「化同法」等其他速算方式難以解決時可以採取的一種速算方式。
適用形式:兩個分數作比較時,若其中一個分數的分子與分母都比另外一個分數的分子與分母分別僅僅大一點,這時候使用「直除法」、「化同法」經常很難比較出大小關系,而使用「差分法」卻可以很好地解決這樣的問題。
★【速算技巧六:插值法】
「插值法」是指在計算數值或者比較數大小的時候,運用一個中間值進行「參照比較」的速算方式,一般情況下包括兩種基本形式:
一、在比較兩個數大小時,直接比較相對困難,但這兩個數中間明顯插了一個可以進行參照比較並且易於計算的數,由此中間數可以迅速得出這兩個數的大小關系。比如說A與B的比較,如果可以找到一個數C,並且容易得到A>C,而BB。
二、在計算一個數值F的時候,選項給出兩個較近的數A與B難以判斷,但我們可以容易的找到A與B之間的一個數C,比如說AC,則我們知道F=B(另外一種情況類比可得)。
★【速算技巧七:湊整法】
「湊整法」是指在計算過程當中,將中間結果湊成一個「整數」(整百、整千等其它方便計算形式的數),從而簡化計算的速算方式。「湊整法」包括加/減法的湊整,也包括乘/除法的湊整。
在資料分析的計算當中,真正意義上的完全湊成「整數」基本上是不可能的,但由於資料分析不要求絕對的精度,所以湊成與「整數」相近的數是資料分析「湊整法」所真正包括的主要內容。
★【速算技巧八:放縮法】
「放縮法」是指在數字的比較計算當中,如果精度要求並不高,我們可以將中間結果進行大膽的「放」(擴大)或者「縮」(縮小),從而迅速得到待比較數字大小關系的速算方式。
若A>B>0,且C>D>0,則有:
1)A+C>B+D
2)A-D>B-C
3)A*C>B*D
4)A/D>B/C
這四個關系式即上述四個例子所想要闡述的四個數學不等關系,是我們在做題當中經常需要用到的非常簡單、非常基礎的不等關系,但確實考生容易忽略,或者在考場之上容易漏掉的數學關系,其本質可以用「放縮法」來解釋。
★【速算技巧九:增長率相關速演算法】
計算與增長率相關的數據是做資料分析題當中經常遇到的題型,而這類計算有一些常用的速算技巧,掌握這些速算技巧對於迅速解答資料分析題有著非常重要的輔助作用。
兩年混合增長率公式:
如果第二期與第三期增長率分別為r1與r2,那麼第三期相對於第一期的增長率為:
r1+r2+r1× r2
增長率化除為乘近似公式:
如果第二期的值為A,增長率為r,則第一期的值A′:
A′=A/1+r≈A×(1-r)
(實際上左式略大於右式,r越小,則誤差越小,誤差量級為r2)
平均增長率近似公式:
如果N年間的增長率分別為r1、r2、r3……rn,則平均增長率:
r≈r1+r2+r3+……rn/n
(實際上左式略小於右式,增長率越接近,誤差越小)
★【速算技巧十:綜合速演算法】
「綜合速演算法」包含了我們資料分析試題當中眾多體系性不如前面九大速算技巧的速算方式,但這些速算方式仍然是提高計算速度的有效手段。
平方數速算:
牢記常用平方數,特別是11~30以內數的平方,可以很好地提高計算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900
尾數法速算:
因為資料分析試題當中牽涉到的數據幾乎都是通過近似後得到的結果,所以一般我們計算的時候多強調首位估算,而尾數往往是微不足道的。因此資料分析當中的尾數法只適用於未經近似或者不需要近似的計算之中。歷史數據證明,國考試題資料分析基本上不能用到尾數法,但在地方考題的資料分析當中,尾數法仍然可以有效地簡化計算。