導航:首頁 > 源碼編譯 > 螢火蟲演算法大全

螢火蟲演算法大全

發布時間:2024-04-01 16:09:10

『壹』 xin-she yang 是誰

應該是 Xin-she Yang,按西方方式吧姓氏 Yang 放在了後面,中文名諸如「楊鑫舍」、「羊欣設」之類。

『貳』 常見的群體智能演算法不包括

有一些並不是廣泛應用的群體智能演算法,比如螢火蟲演算法、布穀鳥演算法、蝙蝠演算法以及磷蝦群演算法等等。

粒子群演算法(particle swarm optimization,PSO)是計算智能領域中的一種生物啟發式方法,屬於群體智能優化演算法的一種,常見的群體智能優化演算法主要有如下幾類:

設想這樣一個場景:一群鳥在隨機的搜索食物。在這個區域里只有一塊食物,所有的鳥都不知道食物在哪。但是它們知道自己當前的位置距離食物還有多遠。那麼找到食物的最優策略是什麼?最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。

Step1:確定一個粒子的運動狀態是利用位置和速度兩個參數描述的,因此初始化的也是這兩個參數;

Step2:每次搜尋的結果(函數值)即為粒子適應度,然後記錄每個粒子的個體歷史最優位置和群體的歷史最優位置;

Step3:個體歷史最優位置和群體的歷史最優位置相當於產生了兩個力,結合粒子本身的慣性共同影響粒子的運動狀態,由此來更新粒子的位置和速度。

位置和速度的初始化即在位置和速度限制內隨機生成一個N x d 的矩陣,而對於速度則不用考慮約束,一般直接在0~1內隨機生成一個50x1的數據矩陣。

此處的位置約束也可以理解為位置限制,而速度限制是保證粒子步長不超限制的,一般設置速度限制為[-1,1]。

粒子群的另一個特點就是記錄每個個體的歷史最優和種群的歷史最優,因此而二者對應的最優位置和最優值也需要初始化。其中每個個體的歷史最優位置可以先初始化為當前位置,而種群的歷史最優位置則可初始化為原點。對於最優搜哪汪值,如果求最大值則初始化為負無窮,相反地初始化為正無窮。

每次搜尋都需要將當前的適應度和最優解同歷史的記錄值進行對比,如果超過歷史最優值,則更新個體和種群的歷史最優位置和最優解。

速度和位置更新是粒子群演算法的核心,其原理表達式和更新方式:

每次更新完速度和位置都需要考慮速度和位置的限制,需要將其限制在規定范圍內,此處僅舉出一個常規方法,即將超約束的數據約束到邊界緩山(當位置或者速度超出初始化限制時,將其拉回靠近的邊界處)。當然,你不用擔心他會停住不動,因為每個粒子還有慣性和其他兩個參數的影響。

粒子群演算法求平方和函數最小值,由於沒有特意指定函數自變數量綱,不進行數據歸一化。



『叄』 優化演算法筆記(二)優化演算法的分類

(以下描述,均不是學術用語,僅供大家快樂的閱讀)

在分類之前,我們先列舉一下常見的優化演算法(不然我們拿什麼分類呢?)。
1遺傳演算法Genetic algorithm
2粒子群優化演算法Particle Swarm Optimization
3差分進化演算法Differential Evolution
4人工蜂群演算法Artificial Bee Colony
5蟻群演算法Ant Colony Optimization
6人工魚群演算法Artificial Fish Swarm Algorithm
7杜鵑搜索演算法Cuckoo Search
8螢火蟲演算法Firefly Algorithm
9灰狼演算法Grey Wolf Optimizer
10鯨魚演算法Whale Optimization Algorithm
11群搜索演算法Group search optimizer
12混合蛙跳演算法Shuffled Frog Leaping Algorithm
13煙花演算法fireworks algorithm
14菌群優化演算法Bacterial Foraging Optimization
以上優化演算法是我所接觸過的演算法,沒接觸過的演算法不能隨便下結論,知之為知之,不知為不知。其實到目前為止優化演算法可能已經有幾百種了,我們不可能也不需要全面的了解所有的演算法,而且優化演算法之間也有較大的共性,深入研究幾個之後再看其他優化演算法上手速度會灰常的快。
優化演算法從提出到現在不過50-60年(遺傳演算法1975年提出),雖種類繁多但大多較為相似,不過這也很正常,比較香蕉和人的基因相似度也有50%-60%。當然演算法之間的相似度要比香蕉和人的相似度更大,畢竟人家都是優化演算法,有著相同的目標,只是實現方式不同。就像條條大路通羅馬,我們可以走去,可以坐汽車去,可以坐火車去,也可以坐飛機去,不管使用何種方式,我們都在去往羅馬的路上,也不會說坐飛機去要比走去更好,交通工具只是一個工具,最終的方案還是要看我們的選擇。

上面列舉了一些常見的演算法,即使你一個都沒見過也沒關系,後面會對它們進行詳細的介紹,但是對後面的分類可能會有些許影響,不過問題不大,就先當總結看了。
再對優化演算法分類之前,先介紹一下演算法的模型,在筆記(一)中繪制了優化演算法的流程,不過那是個較為簡單的模型,此處的模型會更加復雜。上面說了優化演算法有較大的相似性,這些相似性主要體現在演算法的運行流程中。
優化演算法的求解過程可以看做是一個群體的生存過程。

有一群原始人,他們要在野外中尋找食物,一個原始人是這個群體中的最小單元,他們的最終目標是尋找這個環境中最容易獲取食物的位置,即最易存活下來的位置。每個原始人都去獨自尋找食物,他們每個人每天獲取食物的策略只有採集果實、製作陷阱或者守株待兔,即在一天之中他們不會改變他們的位置。在下一天他們會根據自己的策略變更自己的位置。到了某一天他們又聚在了一起,選擇了他們到過的最容易獲取食物的位置定居。
一群原始人=優化演算法中的種群、群體;
一個原始人=優化演算法中的個體;
一個原始人的位置=優化演算法中個體的位置、基因等屬性;
原始人變更位置=優化演算法中總群的更新操作;
該位置獲取食物的難易程度=優化演算法中的適應度函數;
一天=優化演算法中的一個迭代;
這群原始人最終的定居位置=優化演算法所得的解。
優化演算法的流程圖如下:

對優化演算法分類得有個標准,按照不同的標准分類也會得到不一樣的結果。首先說一下我所使用的分類標准(動態更新,有了新的感悟再加):

按由來分類比較好理解,就是該演算法受何種現象啟發而發明,本質是對現象分類。

可以看出演算法根據由來可以大致分為有人類的理論創造而來,向生物學習而來,受物理現象啟發。其中向生物學習而來的演算法最多,其他類別由於舉例有偏差,不是很准確,而且物理現象也經過人類總結,有些與人類現象相交叉,但仍將其獨立出來。
類別分好了,那麼為什麼要這么分類呢?

當然是因為要湊字數啦,啊呸,當然是為了更好的理解學習這些演算法的原理及特點。
向動物生存學習而來的演算法一定是一種行之有效的方法,能夠保證演算法的效率和准確性,因為,如果使用該策略的動物無法存活到我們可以對其進行研究,我們也無法得知其生存策略。(而這也是一種倖存者偏差,我們只能看到行之有效的策略,但並不是我們沒看到的策略都是垃圾,畢竟也發生過小行星撞地球這種小概率毀滅性事件。講個冷笑話開cou心一shu下:一隻小恐龍對他的小夥伴說,好開心,我最喜歡的那顆星星越來越亮了(完)。)但是由於生物的局限性,人們所創造出的演算法也會有局限性:我們所熟知的生物都生存在三維空間,在這些環境中,影響生物生存的條件比較有限,反應到演算法中就是這些演算法在解決較低維度的問題時效果很好,當遇到超高維(維度>500)問題時,結果可能不容樂觀,沒做過實驗,我也不敢亂說。

按更新過程分類相對復雜一點,主要是根據優化演算法流程中更新位置操作的方式來進行分類。更新位置的操作按我的理解可大致分為兩類:1.跟隨最優解;2.不跟隨最優解。
還是上面原始人的例子,每天他有一次去往其他位置狩獵的機會,他們採用何種方式來決定今天自己應該去哪裡呢?
如果他們的策略是「跟隨最優解」,那麼他們選取位置的方式就是按一定的策略向群體已知的最佳狩獵位置(歷史最佳)或者是當前群體中的最佳狩獵位置(今天最佳)靠近,至於是直線跑過去還是蛇皮走位繞過去,這個要看他們群體的策略。當然,他們的目的不是在最佳狩獵位置集合,他們的目的是在過去的途中看是否能發現更加好的狩獵位置,去往已經到過的狩獵地點再次狩獵是沒有意義的,因為每個位置獲取食物的難易程度是固定的。有了目標,大家都會朝著目標前進,總有一日,大家會在謀個位置附近相聚,相聚雖好但不利於後續的覓食容易陷入局部最優。
什麼是局部最優呢?假設在當前環境中有一「桃花源」,擁有上帝視角的我們知道這個地方就是最適合原始人們生存的,但是此地入口隱蔽「山有小口,彷彿若有光」、「初極狹,才通人。」,是一個難以發現的地方。如果沒有任何一個原始人到達了這里,大家向著已知的最優位置靠近時,也難以發現這個「桃源之地」,而當大家越聚越攏之後,「桃源」被發現的可能性越來越低。雖然原始人們得到了他們的解,但這並不是我們所求的「桃源」,他們聚集之後失去了尋求「桃源」的可能,這群原始人便陷入了局部最優。

如果他們的策略是「不跟隨最優解」,那麼他們的策略是什麼呢?我也不知道,這個應該他們自己決定。畢竟「是什麼」比「不是什麼」的范圍要小的多。總之不跟隨最優解時,演算法會有自己特定的步驟來更新個體的位置,有可能是隨機在自己附近找,也有可能是隨機向別人學習。不跟隨最優解時,原始人們應該不會快速聚集到某一處,這樣一來他們的選擇更具多樣性。
按照更新過程對上面的演算法分類結果如下

可以看出上面不跟隨最優解的演算法只有遺傳演算法和差分進化演算法,他們的更新策略是與進化和基因的重組有關。因此這些不跟隨最優解的演算法,他們大多依據進化理論更新位置(基因)我把他們叫做進化演算法,而那些跟隨群體最優解的演算法,他們則大多依賴群體的配合協作,我把這些演算法叫做群智能演算法。

目前我只總結了這兩種,分類方法,如果你有更加優秀的分類方法,我們可以交流一下:

目錄
上一篇 優化演算法筆記(一)優化演算法的介紹
下一篇 優化演算法筆記(三)粒子群演算法(1)

閱讀全文

與螢火蟲演算法大全相關的資料

熱點內容
安卓怎麼把數據傳到蘋果里 瀏覽:499
編譯器標識 瀏覽:789
編程珠璣第三章 瀏覽:782
windows如何開啟tftp伺服器 瀏覽:107
歐姆龍plc編程指令表 瀏覽:186
程序員遠程收入不穩定 瀏覽:860
演算法原理怎麼寫 瀏覽:469
有個動漫女主藍頭發是程序員 瀏覽:998
雲伺服器資源評估 瀏覽:882
微雲下載文件夾是空的 瀏覽:3
r9數控車的編程 瀏覽:403
為什麼刪不掉ksafe文件夾 瀏覽:291
理科男學編程用什麼電腦 瀏覽:839
安陽彈性雲伺服器 瀏覽:570
壓縮空氣儲罐有效期 瀏覽:408
英國文學PDF 瀏覽:175
軟體編程需求 瀏覽:626
廣州哪裡解壓 瀏覽:253
手機小視頻怎麼壓縮 瀏覽:915
微信聊天界面源碼 瀏覽:24